Dorota Koziej
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorota Koziej.
Advanced Materials | 2014
Dorota Koziej; Alessandro Lauria; Markus Niederberger
The fundamental mission of materials science is the description of matter over all length scales. In this review, we apply this concept to particle research. Based on metal oxides, we show that every size range offers its specific features, and every size range had its era, when it was in the center of the research activities. In the first part of the review, we discuss on three metal oxides as examples, how and why the research focus changed its targeted size regime from the micrometer to the nanometer scale and back to the macroscopic world. Next, we present the distinct advantages of using nanoparticles over micrometer-sized particles in selected devices and we point out how such a shift in the size regime opens up new research directions. Finally, we exemplify the methods to introduce nanoparticles into macroscopic objects to make functional ceramics.
ACS Applied Materials & Interfaces | 2009
Dorota Koziej; Fabian Fischer; Niklaus Kränzlin; Walter R. Caseri; Markus Niederberger
A successful strategy to obtain self-supporting (100 microm), UV-absorbing, and, in the visible region, highly transparent TiO2-poly(methyl methacrylate) (PMMA) films was developed. The 15 nm large anatase TiO2 nanocrystals were prepared in a nonaqueous sol-gel approach involving the mixing of Ti(O(i)Pr)4 and benzyl alcohol. The surfaces of the resulting particles were modified with minute amounts of organic ligands in order to make the particles easily dispersible in nonpolar media like xylene and dichloromethane and compatible with PMMA, a polymer of high optical transparency and considerable technical importance. The empirical optimization process of composite fabrication was supplemented by fundamental studies of the crystallization and growth mechanism of anatase particles in a nonaqueous medium. After the preparation of corresponding nanocomposites, the materials were investigated with respect to their UV absorption capability, optical transparency in the visible-wavelength region, and photodegradation.
Small | 2011
Dorota Koziej; Marta D. Rossell; Bettina Ludi; Andreas Hintennach; Petr Novák; Jan-Dierk Grunwaldt; Markus Niederberger
A detailed study is presented on the formation of MoO(2) nanoparticles from the dissolution of the precursor to the final rodlike product, with a focus on the exploration of the inorganic reaction occurring ahead of the nucleation step, and interplay between size and crystal structure of MoO(2). In situ X-ray absorption spectroscopy experiments show that the crystallization and the growth process of MoO(2) nanorods is initiated by rapid reduction of the MoO(2) Cl(2) precursor in benzyl alcohol and acetophenone. This reaction triggers the nucleation of 2 nm MoO(2) particles with spherical shape and hexagonal crystal structure. The transformation from spheres into rods emerges as a complex process driven by oriented attachment. High-resolution transmission electron microscopy and X-ray diffraction results provide evidence that the 2 nm particles first aggregate into 5-20 nm-large oriented assemblies. The increase in particle size induces the phase transition from hexagonal to the less symmetrical monoclinic crystal structure, and finally the transformation into rods. Is it shown that electrodes for lithium-ion batteries based on MoO(2) nanorods have a long-term cycling life. The specific discharge capacity even after 200 cycles at a discharge rate of 1 C is about 300 Ah kg(-1) .
Angewandte Chemie | 2015
Wei Cheng; Yanrui Ju; Payam Payamyar; Darinka Primc; Jingyi Rao; Christoph Willa; Dorota Koziej; Markus Niederberger
Alignment of nanowires over a large area of flat and patterned substrates is a prerequisite to use their collective properties in devices such as gas sensors. In this work, uniform single-crystalline ultrathin W18 O49 nanowires with diameters less than 2 nm and aspect ratios larger than 100 have been synthesized, and, despite their flexibility, assembled into thin films with high orientational order over a macroscopic area by the Langmuir-Blodgett technique. Alignment of the tungsten oxide nanowires was also possible on top of sensor substrates equipped with electrodes. Such sensor devices were found to exhibit outstanding sensitivity to H2 at room temperature.
Chemistry: A European Journal | 2012
Inga Olliges-Stadler; Jan Stötzel; Dorota Koziej; Marta D. Rossell; Jan-Dierk Grunwaldt; Maarten Nachtegaal; Ronald Frahm; Markus Niederberger
Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time-dependent gas chromatography and X-ray diffraction as well as by time-resolved in situ X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopy. Principal component analysis revealed two intermediates, which were identified as WCl(4) and WOCl(4) by using linear combination analysis. Quick-scanning extended X-ray absorption fine structure spectroscopy enabled the time-dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution of the tungsten hexachloride in benzyl alcohol followed by the generation of intermediates with W=O double bonds and finally the construction of the W-O-W network of the tungstite structure.
Nanoscale | 2013
Dorota Koziej; Caspar Floryan; Ralph A. Sperling; Allen Ehrlicher; David Issadore; Robert M. Westervelt; David A. Weitz
We describe a microfluidic device with an integrated microwave heater specifically designed to dielectrically heat non-aqueous droplets using time-varying electrical fields with the frequency range between 700 and 900 MHz. The precise control of frequency, power, temperature and duration of the applied field opens up new vistas for experiments not attainable by conventional microwave heating. We use a non-contact temperature measurement system based on fluorescence to directly determine the temperature inside a single droplet. The maximum temperature achieved of the droplets is 50 °C in 15 ms which represents an increase of about 25 °C above the base temperature of the continuous phase. In addition we use an infrared camera to monitor the thermal characteristics of the device allowing us to ensure that heating is exclusively due to the dielectric heating and not due to other effects like non-dielectric losses due to electrode or contact imperfection. This is crucial for illustrating the potential of dielectric heating of benzyl alcohol droplets for the synthesis of metal oxides. We demonstrate the utility of this technology for metal oxide nanoparticle synthesis, achieving crystallization of tungsten oxide nanoparticles and remarkable microstructure, with a reaction time of 64 ms, a substantial improvement over conventional heating methods.
Journal of Materials Chemistry | 2009
Dorota Koziej; Frank Krumeich; Reinhard Nesper; Markus Niederberger
Crystalline copper and manganese carbodiimide nanoparticles were synthesized following a nonaqueous soft chemistry route by reacting metal chlorides with cyanamide and benzyl amine at 50 °C.
CrystEngComm | 2015
Malwina Staniuk; Daniel Zindel; Wouter van Beek; Ofer Hirsch; Niklaus Kränzlin; Markus Niederberger; Dorota Koziej
Although syntheses in organic solvents provide access to a wide range of copper-based nanoparticles, the correlation between organic reactions in solution and nucleation and growth of nanoparticles with defined properties is not well understood. Here, we utilize the Multivariate Curve Resolution-Alternative Least Squares (MCR-ALS) methodology to examine spectroscopic data recorded in situ during the synthesis of copper-based nanoparticles. While earlier studies showed that depending on the temperature copper(II) acetylacetonate reacts with benzyl alcohol and forms either copper oxides or copper nanoparticles, we link the inorganic reaction with their organic counterparts. From X-ray Absorption Near Edge Spectroscopy (XANES) and Ultraviolet-visible spectroscopy (UV-vis) data we learn that copper(I) oxide forms directly from the solution and is the final product at low temperature of 140 °C. We observe in Fourier Transformed Infrared (FTIR) spectra an increasing concentration of benzyl acetate that co-occurs with the formation of a copper enolate and evolution of benzaldehyde, which accompanies the reduction of copper ions. We also record the interaction of organic species at the Cu2O surface, which inhibits a further reduction to metallic copper. When we raise the synthesis temperature to 170 °C it turns out that the Cu2O is just an intermediate species. It subsequently transforms by solid-state reduction to metallic copper accompanied by oxidation of benzyl alcohol to benzaldehyde.
Journal of Physics: Conference Series | 2013
Jan-Dierk Grunwaldt; Michael Hübner; Dorota Koziej; Nicolae Barsan; Udo Weimar
Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.
ACS Applied Materials & Interfaces | 2017
Christoph Willa; Alexander Schmid; Danick Briand; Jiayin Yuan; Dorota Koziej
We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO2 sensor. We monitor the direct-current resistance changes as a function of CO2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.
Collaboration
Dive into the Dorota Koziej's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputs