Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorota Matyszewska is active.

Publication


Featured researches published by Dorota Matyszewska.


Langmuir | 2008

Polarization modulation infrared reflection-absorption spectroscopy studies of the influence of perfluorinated compounds on the properties of a model biological membrane.

Dorota Matyszewska; J. Jay Leitch; Renata Bilewicz; Jacek Lipkowski

A combination of the Langmuir-Blodgett and Langmuir-Schaefer techniques has been used to build a 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayer at a Au(111) electrode surface with hydrogen-substituted acyl chains in the top leaflet (solution side) and deuterium-substituted acyl chains in the bottom leaflet (gold side). Polarization modulation infrared reflection-absorption spectroscopy was used to determine changes in the conformation and orientation of the acyl chains of DMPC caused by the incorporation of two selected perfluorinated compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), into the top leaflet of the bilayer. The incorporation of perfluorinated compounds into the DMPC bilayer caused a broadening of the methylene peaks and a shift in the methylene band positions toward higher frequencies. In addition, the tilt angle of the acyl chains decreased in comparison to the tilt angle of a pure DMPC bilayer. The reported tilt angles were smaller upon insertion of PFOS ( approximately 24 degrees ) than in the presence of PFOA ( approximately 30 degrees ). Overall, the results show that the incorporation of the perfluorinated acids has an effect on the bilayer similar to that of cholesterol by increasing the membrane fluidity and thickness due to a decrease in the tilt angle of the acyl chains.


Colloids and Surfaces B: Biointerfaces | 2015

pH dependence of daunorubicin interactions with model DMPC:Cholesterol membranes

Dorota Matyszewska; Karolina Brzezińska; Joanna Juhaniewicz; Renata Bilewicz

Mixed monolayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC):Cholesterol 7:3 prepared by the Langmuir-Blodgett method were used as model membranes to investigate the influence of the anticancer drug daunorubicin (DNR) on the properties of the lipid membrane. The Langmuir monolayer experiments revealed that drug - membrane interactions are pH-dependent. The changes in monolayer organization at subphases of pH 7.4 containing daunorubicin visualized by Brewster Angle Microscopy showed that in the presence of the drug the typical morphology observed for phospholipid layers containing cholesterol was no longer seen. It supports the explanation of the mechanism of the drug incorporation into the layers in terms of the competition between DNR molecules and cholesterol in the layer. Increasing surface pressure with time and increasing value of limiting surface pressure with increasing drug concentration in the subphase confirmed incorporation of the drug into the membranes. The interactions between the lipid monolayer and the drug at pH 5.4 were of electrostatic nature between the negative part of the DMPC molecule and positively charged drug, while at pH 7.4 contribution of interactions of daunorubicin with cholesterol was observed. Large differences of the surface-pressure vs. time plots were observed at both pH values when the DMPC:Cholesterol monolayer was not well organized yet. The voltammograms recorded for DMPC:Cholesterol monolayers transferred from the air-water interface onto gold electrode confirmed the presence of the drug in the lipid layer. Based on the charge of the oxidation-reduction peaks corresponding to the redox processes of quinone-hydroquinone group in daunorubicin, the initial surface concentration of the drug in the membrane and the drug release profile to the solution were evaluated.


Langmuir | 2012

Electrochemical and microscopic characteristics of thiolipid layers as simple models of cell membranes.

Dorota Matyszewska; Slawomir Sek; Renata Bilewicz

The thiolipid 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) has been proposed as a component of a simple model of cell membranes, which can be used for the studies of the interactions with drugs and other biologically important species. Depending on the deposition technique, Langmuir-Blodgett method or self-assembly, the obtained model membranes exhibit differences in the organization and properties, as shown by electrochemical techniques. The surface concentration and area per molecule of DPPTE model membranes were determined using chronocoulometry, which gives more reliable results than the widely used reductive desorption method. The mean surface concentration of self-assembled DPPTE monolayer deposited on gold electrode is equal to 4.52 × 10(-10) mol·cm(-2), which corresponds to the area per molecule of 36.7 Å(2). Moreover, model membranes prepared by means of LB method tend to be less compact than self-assembled DPPTE monolayers. Adsorption/desorption behavior of the DPPTE molecules on Au(111) was also visualized by EC-STM method. At the beginning of the process at negative potentials, the physisorbed molecules formed a flat-lying adlayer. Changing the potential in the positive direction resulted in the formation of Au-S bonds, and as a consequence the upstanding phase with higher packing density was observed. The thickness of such a layer determined by atomic force microscopy method is equal to 2.08 nm and corresponds to that of a monomolecular film.


Bioelectrochemistry | 2009

Voltammetric study of gold-supported lipid membranes in the presence of perfluorooctanesulphonic acid

Dorota Matyszewska; Renata Bilewicz

The effect of perfluorooctanesulphonic acid (PFOS) on lipid membranes was studied using supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer as the model membrane. Phospholipid bilayer was deposited on gold electrode using a combination of the Langmuir-Blodgett and Langmuir-Schaefer (LB/LS) techniques. Electrodes were modified with two different types of membranes: DMPC bilayers initially containing PFOS and pure DMPC bilayers later exposed to the PFOS solutions. Such approach allowed studying both the changes in membrane characteristic imposed by the perfluorinated compound present in the model membrane and the process of its incorporation into the membrane. Studies with anticancer drug doxorubicin revealed that PFOS inhibits drug transport through the phospholipid bilayer and its effect can be compared to that of cholesterol. Moreover, the different trends observed in the changes in electron transfer rate constant (k(s)) calculated for ferricyanides and in peak current of hexaamineruthenium chloride showed that electrostatic interactions between electroactive probes and PFOS molecules incorporating into phospholipid bilayers play an important role and should be taken into account while explaining the interactions of perfluorooctanesulphonic acid with model biological membranes.


Langmuir | 2016

Interactions of Lipidic Cubic Phase Nanoparticles with Lipid Membranes

Elżbieta Jabłonowska; Ewa Nazaruk; Dorota Matyszewska; Chiara Speziale; Raffaele Mezzenga; Ehud M. Landau; Renata Bilewicz

The interactions of liquid-crystalline monoolein (GMO) cubic phase nanoparticles with various model lipid membranes spread at the air-solution interface by the Langmuir technique were investigated. Cubosomes have attracted attention as potential biocompatible drug delivery systems, and thus understanding their mode of interaction with membranes is of special interest. Cubosomes spreading at the air-water interface as well as interactions with a monolayer of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) compressed to different surface pressures were studied by monitoring surface pressure-time dependencies at constant area. Progressive incorporation of the nanoparticles was shown to lead to mixed monolayer formation. The concentration of cubosomes influenced the mechanism of incorporation, as well as the fluidity and permeability of the resulting lipid membranes. Brewster angle microscopy images reflected the dependence of the monolayer structure on the cubosomes presence in the subphase. A parameter Csat was introduced to indicate the point of saturation of the lipid membrane with the cubosomal material. This parameter was found to depend on the surface pressure showing that the cubosomes disintegrate in prolonged contact with the membrane, filling available voids in the lipid membrane. At highest surface pressures when the layer is most compact, the penetration of cubosomal material is not possible and only some exchange with the membrane lipid becomes the route of including GMO into the layer. Finally, comparative studies of the interactions between lipids with various headgroup charges with cubosomes suggest that at high surface pressure an exchange of lipid component between the monolayer and the cubosome in its intact form may occur.


Langmuir | 2016

PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose

Dorota Matyszewska; Renata Bilewicz; Zhangfei Su; Fatemah Abbasi; J. Jay Leitch; Jacek Lipkowski

A phospholipid bilayer composed of 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) was deposited onto the Au(111) electrode modified with a self-assembled monolayer of 1-thio-β-d-glucose (β-Tg) via the Langmuir-Blodgett and Langmuir-Schaefer (LB-LS) techniques. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane on a hydrophilic surface modified gold electrode. The results of the spectroscopic measurements showed that the tilt angle of acyl chains obtained for deuterated DMPC bilayers supported on the β-Tg-modified gold is significantly lower than that reported previously for DMPC bilayers deposited directly on Au(111) electrodes. Moreover, tilt angles of ∼18° were obtained for d54-DMPC bilayers on β-Tg self-assembled monolayers (SAMs) at positive potentials, which are similar to the values calculated for h-DMPC deposited on bare gold in the desorbed state and to those observed for a stack of hydrated DMPC bilayers. This data confirms that the β-thioglucose SAM promotes the formation of a water cushion that separates the phospholipid bilayer from the metal surface. As a result, the DMPC polar heads are not in direct contact with the electrode and can adopt a zigzag configuration, which strengthens the chain-chain interactions and allows for an overall decrease in the tilt of the acyl chains. These novel supported model membranes may be especially useful in studies pertaining to the incorporation of peptides and proteins into phospholipid bilayers.


Beilstein Journal of Nanotechnology | 2016

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

Dorota Matyszewska

Summary In this work the interactions of an anticancer drug daunorubicin (DNR) with model thiolipid layers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) were investigated using Langmuir technique. The results obtained for a free drug were compared with the results recorded for DNR attached to SWCNTs as potential drug carrier. Langmuir studies of mixed DPPTE–SWCNTs-DNR monolayers showed that even at the highest investigated content of the nanotubes in the monolayer, the changes in the properties of DPPTE model membranes were not as significant as in case of the incorporation of a free drug, which resulted in a significant increase in the area per molecule and fluidization of the thiolipid layer. The presence of SWCNTs-DNR in the DPPTE monolayer at the air–water interface did not change the organization of the lipid molecules to such extent as the free drug, which may be explained by different types of interactions playing crucial role in these two types of systems. In the case of the interactions of free DNR the electrostatic attraction between positively charged drug and negatively charged DPPTE monolayer play the most important role, while in the case of SWCNTs-DNR adducts the hydrophobic interactions between nanotubes and acyl chains of the lipid seem to be prevailing. Electrochemical studies performed for supported model membranes containing the drug delivered in the two investigated forms revealed that the surface concentration of the drug-nanotube adduct in supported monolayers is comparable to the reported surface concentration of the free DNR incorporated into DPPTE monolayers on gold electrodes. Therefore, it may be concluded that the application of carbon nanotubes as potential DNR carrier allows for the incorporation of comparable amount of the drug into model membranes with simultaneous decrease in the negative changes in the membrane structure and organization, which is an important aspect in terms of side effects of the drug.


Bioelectrochemistry | 2012

Influence of membrane organization on the interactions between persistent pollutants and model membranes

Dorota Matyszewska; Ewa Wypijewska; Renata Bilewicz

Langmuir monolayer studies and electrochemical methods were employed to investigate the effect of model membrane organization on the interactions with persistent pollutants such as perfluorinated carboxylic acids (PFCAs). 1,2-dimyristoyl-sn-glycero-3-phosphoethanoloamine (DMPE) was employed to construct the model lipid membrane and perfluorooctanesulphonic acid (PFOS) was chosen as the representative of perfluorinated pollutants. We demonstrate that perfluorinated compounds penetrate a model membrane only when it is less condensed. Such liquid-expanded phase was achieved by compressing the Langmuir monolayer to lower surface pressures. PFOS incorporation into model DMPE membrane during membrane formation was observed in liquid-expanded region, while at higher surface pressures, in the well-organized monolayer the expulsion of perfluorinated compound occurred as the result of a strong attraction between the DMPE molecules. The DMPE monolayers prepared by the Langmuir-Blodgett/Langmuir-Schaefer method were transferred onto gold electrode under surface pressure of 3 mN/m and 20 mN/m. The model membrane organization depends on surface pressure during transfer and time of exposure to PFOS solution and is shown to affect the electrode accessibility by three electroactive compounds used as the probes of the blocking properties of the monolayer: menadione, potassium ferricyanide and hexaamineruthenium chloride, differing in the properties and kinetics of electron transfer.


Langmuir | 2014

Dependence of Interfacial Film Organization on Lipid Molecular Structure

Dorota Matyszewska; Slawomir Sek; Elżbieta Jabłonowska; Barbara Palys; Jan Pawłowski; Renata Bilewicz; Fabian Konrad; Yazmin M. Osornio; Ehud M. Landau

Combination of surface analytical techniques was employed to investigate the interfacial behavior of the two designed lipids-N-stearoylglycine (1) and its bulky neutral headgroup-containing derivative N-stearoylvaline ethyl ester (2)-at the air-solution interface and as transferred layers on different substrates. Formation of monolayers at the air-water interface was monitored on pure water and on aqueous solutions of different pH. Crystallization effects were visualized at pure water by recording the hystereses in the Langmuir-Blodgett (LB) isotherms and by transferring the layers onto mica, gold (111), and ITO (indium-tin oxide on glass) electrodes. Subphase pH affects the morphology and patch formation in monolayers of 1, as evidenced by BAM measurements. At pH 8.2, formation of well-ordered crystallites is observed, which upon compression elongate according to predominantly 1-D growth mechanism to form a dense layer of crystallites. This effect is not observed in monolayers of 2, whose headgroup is not protonated. The orientation of layers of 1 transferred to the solid supports is also pH dependent, and their stability can be related to formation of a hydrogen-bonded networks. AFM images of 1 exhibited platelets of multilayer phase. The IR spectra of the ITO substrates covered by 1 indicated formation of hydrogen bonds between the amide groups. The nature of the adsorption layer and its organization as a function of potential were studied in-depth by EC STM using Au(111) as the substrate. A model showing the arrangement of hydrogen bonds between adsorbed molecules is presented and related to the observed organization of the layer.


Journal of Nanoparticle Research | 2018

Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir–Blodgett biomimetic membranes

Dorota Matyszewska; Ewelina Napora; Kamila Żelechowska; Jan F. Biernat; Renata Bilewicz

AbstractThe synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ

Collaboration


Dive into the Dorota Matyszewska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ehud M. Landau

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge