Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorota Tomaszewska-Zaremba is active.

Publication


Featured researches published by Dorota Tomaszewska-Zaremba.


Journal of Endocrinology | 2008

Identification of salsolinol in the mediobasal hypothalamus of lactating ewes and its relation to suckling-induced prolactin and GH release

Tomasz Misztal; Konrad Górski; Dorota Tomaszewska-Zaremba; Edyta Molik; Katarzyna Romanowicz

The push-pull perfusions of the infundibular nucleus-median eminence (IN/ME) were made in lactating ewes (n=7) twice, to identify dopamine (DA)-derived salsolinol and the changes in its extracellular concentration in response to suckling. The perfusate collecting period in every ewe consisted of control non-suckling period, 1000-1230 h (five perfusates), and suckling period, 1230-1500 h (next five perfusates). Simultaneously, blood samples were collected from 1000 to 1500 h at 10-min intervals. The perfusate concentrations of salsolinol and DA were measured by HPLC, and plasma prolactin and GH concentrations were assayed by the RIA. Mean concentrations of salsolinol in perfusates collected from the anterior and posterior parts of the IN/ME (according to post-mortem localization of a perfusion site) increased significantly (P<0.05 and P<0.001 respectively) during the suckling period, when compared with those noted during the non-suckling period. While no DA was found in the anterior part, only vestigial amounts of DA were found in a few perfusates collected from the posterior part. Salsolinol was not detected in the IN/ME of ewes 10 weeks after weaning (seasonal anoestrus). Mean plasma prolactin and GH concentrations during suckling were significantly (P<0.001) higher than those noted during the non-suckling period. In conclusion, our current study reveals that salsolinol is present in the IN/ME of lactating ewes and that its extracellular concentration increases during suckling. Moreover, it supports the role of salsolinol as a neurotransmitter involved in the regulatory process of prolactin secretion at least during lactation.


Reproduction in Domestic Animals | 2012

Central injection of exogenous IL-1β in the control activities of hypothalamic-pituitary-gonadal axis in anestrous ewes.

Andrzej Przemysław Herman; Tomasz Misztal; Katarzyna Romanowicz; Dorota Tomaszewska-Zaremba

This study was performed to determine the effect of intracerebroventricular (icv) injection of interleukin (IL)-1β on the gene expression, translation and release of gonadotropin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) gene expression in the hypothalamus of anestrous ewes. In the anterior pituitary gland (AP), the expression of genes encoding: GnRHR, β subunits of luteinizing hormone (LH) and folliculotropic hormone (FSH) was determined as well as the effect of IL-1β on pituitary gonadotropins release. The relative mRNA level was determined by real-time PCR, GnRH concentration in the cerebrospinal fluid (CSF) was assayed by ELISA and the plasma concentration of LH and FSH were determined by radioimmunoassay. Our results showed that icv injection of IL-1β (10 or 50 μg/animal) decreased the GnRH mRNA level in the pre-optic area (POA) (35% and 40% respectively; p ≤ 0.01) and median eminence (ME) (75% and 70% respectively; p ≤ 0.01) and GnRHR gene expression in ME (55% and 50% respectively; p ≤ 0.01). A significant decrease in GnRHR mRNA level in the AP in the group treated with the 50 μg (60%; p ≤ 0.01) but not with the 10 μg dose was observed. The centrally administrated IL-1β lowered also GnRH concentration in the CSF (60%; p ≤ 0.01) and reduced the intensity of GnRH translation in the POA (p ≤ 0.01). It was not found any effect of icv IL-1β injection upon the release of LH and FSH. However, the central injection of IL-1β strongly decreased the LHβ mRNA level (41% and 50%; p ≤ 0.01; respectively) and FSHβ mRNA in the case of the 50 μg dose (49%; p ≤ 0.01) in the pituitary of anestrous ewes. These results demonstrate that the central IL-1β is an important modulator of the GnRH biosynthesis and release during immune/inflammatory challenge.


Reproductive Biology | 2009

The role of immunological system in the regulation of gonadoliberin and gonadotropin secretion

Dorota Tomaszewska-Zaremba; Andrzej Przemysław Herman

This article reviews data concerning the interactions between immune and neuroendocrine systems in the regulation of reproduction processes at the hypothalamic and pituitary level during immunological stress. Hypothalamus seems to play the most important role in the inhibitory action of immune challenge on the gonadoliberin (GnRH) and gonadotropin secretion as well in the inhibition of the reproductive functions. The administration of endotoxin as a model of immunological stress could alter circulating concentrations of luteinizing hormone (LH) via actions at the hypothalamus through altered GnRH secretion, or at the level of the pituitary via inhibition of LH production and release in response to GnRH. At the central level, interleukin (IL)-1beta seems to play the most important role in the suppression of GnRH secretion during immune challenge. The inhibitory action of this cytokine on GnRH may involve different neural mechanisms: direct action on the GnRH neurons through the IL-1 receptors or indirect action involving other mediators such as opioids, catecholamines, gamma-aminobutyric acid, prostaglandins or nitric oxide.


Clinical & Developmental Immunology | 2013

LPS-induced inflammation potentiates the IL-1β-mediated reduction of LH secretion from the anterior pituitary explants.

Andrzej Przemysław Herman; Agata Krawczyńska; Joanna Bochenek; Elżbieta Dobek; Anna Herman; Dorota Tomaszewska-Zaremba

Acting at the level of the brain, interleukin- (IL-)1β is considered to be one of the most potent downregulators of reproduction processes during immune/inflammatory challenge. IL-1β suppresses gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus resulting in the inhibition of the luteinizing hormone (LH) release from the anterior pituitary (AP). However, the presence of IL-1β receptors in the AP suggests the possible direct action of this cytokine on LH secretion. The study was designed to determine the effect of IL-1β on the LH secretion from the AP explants collected from saline and LPS-treated ewes in the follicular phase. It was found that IL-1β suppressed (P ≤ 0.01) GnRH-stimulated LH release and LHβ gene expression in AP explants in both groups. However, IL-1β action was more potent in the explants collected from LPS-treated animals. Pituitaries from LPS-treated animals were characterized by increased (P ≤ 0.01) IL-1 type I receptor and decreased (P ≤ 0.01) GnRH receptor gene expression level compared to the saline-treated group. IL-1β also affected the GnRH-R gene expression in explants collected from LPS-treated animals. Our results show that direct action of IL-1β on the pituitary gonadotropes could be one of the reasons of the reproductive processes disorders accompanying an inflammatory state.


Reproduction in Domestic Animals | 2009

The Possible Involvement of Salsolinol and Hypothalamic Prolactin in the Central Regulatory Processes in Ewes During Lactation

Konrad Górski; Katarzyna Romanowicz; Andrzej Przemysław Herman; E Molik; Alina Gajewska; Dorota Tomaszewska-Zaremba; Tomasz Misztal

Salsolinol, a dopamine-related compound and prolactin-producing cells were found in the ovine hypothalamus. This study was designed to test the hypothesis that salsolinol, acting from the CNS level, is able to stimulate pituitary prolactin release as well as prolactin mRNA expression in the anterior pituitary cells (AP) and in the mediobasal hypothalamus (MBH) in lactating ewes. The intracerebroventricular infusions of salsolinol in two doses, total of 50 ng or 5 μg, were performed in a series of five 10-min infusions at 20-min intervals. All infusions were made from 12:30 to 15:00 and the pre-infusion period was from 10:00 to 12.30 h. The prolactin concentration in plasma samples, collected every 10 min, was determined by radioimmunoassay; prolactin mRNA expression in AP and MBH tissues was determined by real-time PCR. The obtained results showed that salsolinol infused at the higher dose significantly (p < 0.001) increased plasma prolactin concentration in lactating ewes, when compared with the concentration noted before the infusion and with that in lactating controls. In lactating ewes, the relative levels of prolactin mRNA expression in the AP and MBH were up to twofold and fivefold higher respectively than in non-lactating ewes (p < 0.05). In our experimental design, salsolinol did not significantly affect the ongoing process of prolactin gene expression in these tissues. We conclude that in ewes, salsolinol may be involved, at least, in the process of stimulation of prolactin release during lactation and that hypothalamic prolactin plays an important role in the central mechanisms of adaptation to lactation.


Brain Research | 2010

Effects of a structural analogue of salsolinol, 1-MeDIQ, on pituitary prolactin release and dopaminergic activity in the mediobasal hypothalamus in nursing sheep.

Tomasz Misztal; Konrad Górski; Dorota Tomaszewska-Zaremba; Ferenc Fülöp; Katarzyna Romanowicz

The prolactin release caused by salsolinol (a derivative of dopamine, DA) in rats could be prevented by its structural analogue 1-methyl-3,4-dihydroisoqinoline (1-MeDIQ). To study the participation of salsolinol in the neural stimulatory mechanism of prolactin release in lactating sheep, we tested whether 1-MeDIQ, acting at the central nervous system (CNS) level, would diminish basal prolactin release and reduce prolactin surge induced by suckling. A series of intracerebroventricular (icv) infusions of 1-MeDIQ (5 x 60 microg/60 microl/30 min, at 30-min intervals) were performed in nursing ewes (n=8) during the fifth week of lactation. Additionally, by combining these infusions with push-pull perfusion, we studied the concentration of dopaminergic components, i.e., salsolinol, DA and 3,4-dihydroxyphenylacetic acid (DOPAC) within the infundibular nucleus/median eminence (IN/ME) in four of the ewes. Treatment with 1-MeDIQ significantly (P<0.001) reduced either the basal prolactin release during the non-suckling period or the suckling-induced prolactin surge. Specifically, the suppressive effect occurred gradually, affecting both the duration and amplitude of the prolactin surge. In the control ewes, the perfusate salsolinol concentration increased significantly (P<0.001) during suckling, while in the ewes treated with 1-MeDIQ only vestigial amounts of this compound were found during the non-suckling period. No DA was detected in the perfusates collected from the IN/ME of control and 1-MeDIQ-treated groups and no significant differences were found in the DOPAC concentrations between these groups. In conclusion, 1-MeDIQ is able to inhibit prolactin secretion in lactating sheep, acting at the CNS level. In addition, one of the way of 1-MeDIQ action may be directed to the local salsolinol release within the mediobasal hypothalamus.


BioMed Research International | 2014

Peripheral Injection of SB203580 Inhibits the Inflammatory-Dependent Synthesis of Proinflammatory Cytokines in the Hypothalamus

Andrzej Przemysław Herman; Agata Krawczyńska; Joanna Bochenek; Hanna Antushevich; Anna Herman; Dorota Tomaszewska-Zaremba

The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL-) 1β, IL-6, and tumor necrosis factor (TNF) α in the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS) (400 ng/kg) over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK), which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFα synthesis. Intravenous injection of SB203580 successfully inhibited (P < 0.01) synthesis of IL-1β and reduced (P < 0.01) the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P < 0.01) gene expression of TNFα but its effect was not observed at the level of TNFα protein synthesis. SB203580 also reduced (P < 0.01) LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.


Animal Reproduction Science | 2013

The effect of rivastigmine on the LPS-induced suppression of GnRH/LH secretion during the follicular phase of the estrous cycle in ewes

Andrzej Przemysław Herman; Agata Krawczyńska; Joanna Bochenek; Karolina Haziak; Katarzyna Romanowicz; Tomasz Misztal; Hanna Antushevich; Anna Herman; Dorota Tomaszewska-Zaremba

This study was designed to determine the effect of a potent subcutaneously injected acetylcholinesterase inhibitor, rivastigmine (6mg/animal), on the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release during inflammation induced by an intravenous lipopolysaccharide (LPS) (400ng/kg) injection in ewes during the follicular phase of the estrous cycle. The results are expressed as the mean values from -2 to -0.5h before and +1 to +3h after treatment. Rivastigmine decreased the acetylcholinesterase concentration in the blood plasma from 176.9±9.5 to 99.3±15.1μmol/min/ml. Endotoxin suppressed LH (5.4±0.6ng/ml) and GnRH (4.6±0.4pg/ml) release; however, the rivastigmine injection restored the LH concentration (7.8±0.8ng/ml) to the control value (7.8±0.7ng/ml) and stimulated GnRH release (7.6±0.8pg/ml) compared to the control (5.9±0.4pg/ml). Immune stress decreased expression of the GnRH gene and its receptor (GnRH-R) in the median eminence as well as LHβ and GnRH-R in the pituitary. In the case of the GnRH and LHβ genes, the suppressive effect of inflammation was negated by rivastigmine. LPS stimulated cortisol and prolactin release (71.1±14.7 and 217.1±8.0ng/ml) compared to the control group (9.0±5.4 and 21.3±3.5ng/ml). Rivastigmine also showed a moderating effect on cortisol and prolactin secretion (43.1±13.1 and 169.7±29.5ng/ml). The present study shows that LPS-induced decreases in GnRH and LH can be reduced by the AChE inhibitor. This action of the AChE inhibitor could result from the suppression of pro-inflammatory cytokine release and the attenuation of the stress response. However, a direct stimulatory effect of ACh on GnRH/LH secretion should also be considered.


Mediators of Inflammation | 2016

Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin

Andrzej Przemysław Herman; Joanna Bochenek; Karolina Król; Agata Krawczyńska; Hanna Antushevich; Bartosz Pawlina; Anna Herman; Katarzyna Romanowicz; Dorota Tomaszewska-Zaremba

In vertebrates, numerous processes occur in a rhythmic manner. The hormonal signal reliably reflecting the environmental light conditions is melatonin. Nocturnal melatonin secretion patterns could be disturbed in pathophysiological states, including inflammation, Alzheimers disease, and depression. All of these states share common elements in their aetiology, including the overexpression of interleukin- (IL-) 1β in the central nervous system. Therefore, the present study was designed to determine the effect of the central injection of exogenous IL-1β on melatonin release and on the expression of the enzymes of the melatonin biosynthetic pathway in the pineal gland of ewe. It was found that intracerebroventricular injections of IL-1β (50 µg/animal) suppressed (P < 0.05) nocturnal melatonin secretion in sheep regardless of the photoperiod. This may have resulted from decreased (P < 0.05) synthesis of the melatonin intermediate serotonin, which may have resulted, at least partially, from a reduced expression of tryptophan hydroxylase. IL-1β also inhibited (P < 0.05) the expression of the melatonin rhythm enzyme arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyltransferase. However, the ability of IL-1β to affect the expression of these enzymes was dependent upon the photoperiod. Our study may shed new light on the role of central IL-1β in the aetiology of disruptions in melatonin secretion.


Mediators of Inflammation | 2014

Effects of Central Injection of Anti-LPS Antibody and Blockade of TLR4 on GnRH/LH Secretion during Immunological Stress in Anestrous Ewes

Karolina Haziak; Andrzej Przemysław Herman; Dorota Tomaszewska-Zaremba

The present study was designed to examine the effect of intracerebroventricular (icv) administration of antilipopolysaccharide (LPS) antibody and blockade of Toll-like receptor 4 (TLR4) during immune stress induced by intravenous (iv) LPS injection on the gonadotropin-releasing hormone/luteinizing hormone (GnRH/LH) secretion in anestrous ewes. Injection of anti-LPS antibody and TLR4 blockade significantly (P < 0.01) reduced the LPS dependent lowering amount of GnRH mRNA in the median eminence (ME). Moreover, blockade of TLR4 caused restoration of LH-β transcription in the anterior pituitary decreased by the immune stress. However, there was no effect of this treatment on reduced LH release. The results of our study showed that the blockade of TLR4 receptor in the hypothalamus is not sufficient to unblock the release of LH suppressed by the immune/inflammatory challenges. This suggests that during inflammation the LH secretion could be inhibited directly at the pituitary level by peripheral factors such as proinflammatory cytokines and circulating endotoxin as well.

Collaboration


Dive into the Dorota Tomaszewska-Zaremba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Bochenek

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Herman

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Karolina Haziak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hanna Antushevich

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomasz Misztal

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bartosz Pawlina

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge