Dorothea Eisenhardt
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorothea Eisenhardt.
The Journal of Neuroscience | 2005
Nicola Stollhoff; Randolf Menzel; Dorothea Eisenhardt
Memory retrieval initiates two consolidation processes: consolidation of an extinction memory and reconsolidation of the acquisition memory. The strength of the consolidation processes depends on both the strength of the acquisition memory and the strength of retrieval trials and is correlated with its sensitivity to inhibition. We demonstrate that in the honeybee (Apis mellifera), memory retrieval of a consolidated appetitive olfactory memory leads to both consolidation processes, depending on the number of retrieval trials. Spontaneous recovery from extinction is induced by many (five), but not by few (one and two), retrieval trials. Spontaneous recovery is blocked by emetine, an inhibitor of protein synthesis. We conclude that reconsolidation of the acquisition memory underlies spontaneous recovery.
Journal of Apicultural Research | 2013
Geoffrey R. Williams; Cédric Alaux; Cecilia Costa; Tamas Csaki; Vincent Doublet; Dorothea Eisenhardt; Ingemar Fries; Rolf Kuhn; Dino P. McMahon; Piotr Medrzycki; Tomás E. Murray; Myrsini E. Natsopoulou; Peter J. Neumann; Randy Oliver; Robert J. Paxton; Stephen F. Pernal; Dave Shutler; Gina Tanner; Jozef van der Steen; Robert Brodschneider
Summary Adult honey bees are maintained in vitro in laboratory cages for a variety of purposes. For example, researchers may wish to perform experiments on honey bees caged individually or in groups to study aspects of parasitology, toxicology, or physiology under highly controlled conditions, or they may cage whole frames to obtain newly emerged workers of known age cohorts. Regardless of purpose, researchers must manage a number of variables, ranging from selection of study subjects (e.g. honey bee subspecies) to experimental environment (e.g. temperature and relative humidity). Although decisions made by researchers may not necessarily jeopardize the scientific rigour of an experiment, they may profoundly affect results, and may make comparisons with similar, but independent, studies difficult. Focusing primarily on workers, we provide recommendations for maintaining adults under in vitro laboratory conditions, whilst acknowledging gaps in our understanding that require further attention. We specifically describe how to properly obtain honey bees, and how to choose appropriate cages, incubator conditions, and food to obtain biologically relevant and comparable experimental results. Additionally, we provide broad recommendations for experimental design and statistical analyses of data that arises from experiments using caged honey bees. The ultimate goal of this, and of all COLOSS BEEBOOK papers, is not to stifle science with restrictions, but rather to provide researchers with the appropriate tools to generate comparable data that will build upon our current understanding of honey bees.
Cell | 2006
Randolf Menzel; Gérard Leboulle; Dorothea Eisenhardt
Learning, memory, and social behavior are innate properties of the honeybee that are essential for the survival of each individual as well as for the survival of the hive. The small, accessible brain of the honeybee and the availability of the complete sequence of its genome make this social insect an ideal model for studying the connection between learning, memory, and social behavior.
The Journal of Neuroscience | 2010
Laurenz Müssig; Antje Richlitzki; Reinhard Rössler; Dorothea Eisenhardt; Randolf Menzel; Gérard Leboulle
Memory formation is a continuous process composed of multiple phases that can develop independently from each other. These phases depend on signaling pathways initiated after the activation of receptors in different brain regions. The NMDA receptor acts as a sensor of coincident activity between neural inputs, and, as such, its activation during learning is thought to be crucial for various forms of memory. In this study, we inhibited the expression of the NR1 subunit of the NMDA receptor in the honeybee brain using RNA interference. We show that the disruption of the subunit expression in the mushroom body region of the honeybee brain during and shortly after appetitive learning selectively impaired memory. Although the formation of mid-term memory and early long-term memory was impaired, late long-term memory was left intact. This indicates that late long-term memory formation differs in its dependence on NMDA receptor activity from earlier memory phases.
Journal of Visualized Experiments | 2011
Johannes Felsenberg; Katrin Gehring; Victoria Antemann; Dorothea Eisenhardt
Honeybees (Apis mellifera) are well known for their communication and orientation skills and for their impressive learning capability1,2. Because the survival of a honeybee colony depends on the exploitation of food sources, forager bees learn and memorize variable flower sites as well as their profitability. Forager bees can be easily trained in natural settings where they forage at a feeding site and learn the related signals such as odor or color. Appetitive associative learning can also be studied under controlled conditions in the laboratory by conditioning the proboscis extension response (PER) of individually harnessed honeybees3,4. This learning paradigm enables the study of the neuronal and molecular mechanisms that underlie learning and memory formation in a simple and highly reliable way5-12. A behavioral pharmacology approach is used to study molecular mechanisms. Drugs are injected systemically to interfere with the function of specific molecules during or after learning and memory formation13-16. Here we demonstrate how to train harnessed honeybees in PER conditioning and how to apply drugs systemically by injection into the bee flight muscle.
Neurobiology of Learning and Memory | 2008
Nicola Stollhoff; Randolf Menzel; Dorothea Eisenhardt
Combining memory retrieval with the application of a protein synthesis-inhibitor leads to an amnestic effect that is referred to as the reconsolidation phenomenon. Several behavioural studies demonstrate that only a few or weak retrieval trials (that do not result in significant extinction) lead to this phenomenon. In contrast, many trials (that result in significant extinction) combined with a protein synthesis inhibitor result in an inhibition of the extinction memory. Based on these findings it was suggested that extinction is the boundary condition for reconsolidation: when extinction is induced the consolidation of the extinction memory is the dominant process. Recently we were not able to confirm this hypothesis in the honeybee (Apis mellifera): we did not find the reconsolidation phenomenon after one retrieval trial, but demonstrated reconsolidation after five retrieval trials that led to extinction. To exclude that this observation resembles a special case in insects we here wanted to know if one retrieval trial induces reconsolidation as it has been demonstrated before in many other species. To do so we used experimental parameters that had been used before to demonstrate consolidation in the honeybee with the exception that this time the protein synthesis-inhibitor was applied 1 h after one memory retrieval instead after acquisition. We thereby demonstrate the reconsolidation phenomenon after one retrieval trial but only when using the doubled dose of protein synthesis-inhibitor that has been used to inhibit consolidation.
Insect Molecular Biology | 2003
Dorothea Eisenhardt; A. Friedrich; Nicola Stollhoff; Uli Müller; H. Kress; Randolf Menzel
The transcription factor CREB (cAMP response element binding protein) is required for the switch from short‐term to long‐term synaptic plasticity and from short‐term to long‐term memory. Its activity is regulated by the cAMP‐dependent signalling cascade, which has been shown to play a crucial role in the honeybees long‐term memory formation. To elucidate the role of the CREB in honeybee memory formation we analysed a CREB‐homologous gene, AmCREB, which is expressed as several transcripts in the honeybee brain. Eight transcripts have been identified (AmCREB 1–8) that are generated by alternate splicing. One antibody generated against a subset of these variants reveals a cytosolic localization in the mushroom body α‐lobes, the glomeruli of the antennal lobes, the protocerebral lobes, the central complex and in the optical lobes.
Learning & Memory | 2011
Evren Pamir; Neloy Kumar Chakroborty; Nicola Stollhoff; Katrin B. Gehring; Victoria Antemann; Laura Morgenstern; Johannes Felsenberg; Dorothea Eisenhardt; Randolf Menzel; Martin P. Nawrot
Conditioned behavior as observed during classical conditioning in a group of identically treated animals provides insights into the physiological process of learning and memory formation. However, several studies in vertebrates found a remarkable difference between the group-average behavioral performance and the behavioral characteristics of individual animals. Here, we analyzed a large number of data (1640 animals) on olfactory conditioning in the honeybee (Apis mellifera). The data acquired during absolute and differential classical conditioning differed with respect to the number of conditioning trials, the conditioned odors, the intertrial intervals, and the time of retention tests. We further investigated data in which animals were tested for spontaneous recovery from extinction. In all data sets we found that the gradually increasing group-average learning curve did not adequately represent the behavior of individual animals. Individual behavior was characterized by a rapid and stable acquisition of the conditioned response (CR), as well as by a rapid and stable cessation of the CR following unrewarded stimuli. In addition, we present and evaluate different model hypotheses on how honeybees form associations during classical conditioning by implementing a gradual learning process on the one hand and an all-or-none learning process on the other hand. In summary, our findings advise that individual behavior should be recognized as a meaningful predictor for the internal state of a honeybee--irrespective of the group-average behavioral performance.
Insect Molecular Biology | 2001
Dorothea Eisenhardt; A. Fiala; Pascal Braun; Hendrik Rosenboom; H. Kress; Paul R. Ebert; Randolf Menzel
In the honeybee the cAMP‐dependent signal transduction cascade has been implicated in processes underlying learning and memory. The cAMP‐dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee. The deduced amino acid sequence shows 80–94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes. The level of expression varies within all three neuropiles.
Learning & Memory | 2014
Dorothea Eisenhardt
The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flowers characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates.