Dorothea Wilms
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorothea Wilms.
Journal of Chemical Physics | 2010
Alexander Winkler; Dorothea Wilms; Peter Virnau; K. Binder
When a fluid that undergoes a vapor to liquid transition in the bulk is confined to a long cylindrical pore, the phase transition is shifted (mostly due to surface effects at the walls of the pore) and rounded (due to finite size effects). The nature of the phase coexistence at the transition depends on the length of the pore: for very long pores, the system is axially homogeneous at low temperatures. At the chemical potential where the transition takes place, fluctuations occur between vapor- and liquidlike states of the cylinder as a whole. At somewhat higher temperatures (but still far below bulk criticality), the system at phase coexistence is in an axially inhomogeneous multidomain state, where long cylindrical liquid- and vaporlike domains alternate. Using Monte Carlo simulations for the Ising/lattice gas model and the Asakura-Oosawa model of colloid-polymer mixtures, the transition between these two different scenarios is characterized. It is shown that the density distribution changes gradually from a double-peak structure to a triple-peak shape, and the correlation length in the axial direction (measuring the equilibrium domain length) becomes much smaller than the cylinder length. The (rounded) transition to the disordered phase of the fluid occurs when the axial correlation length has decreased to a value comparable to the cylinder diameter. It is also suggested that adsorption hysteresis vanishes when the transition from the simple domain state to the multidomain state of the cylindrical pore occurs. We predict that the difference between the pore critical temperature and the hysteresis critical temperature should increase logarithmically with the length of the pore.
International Journal of Modern Physics C | 2012
Debabrata Deb; Dorothea Wilms; Alexander Winkler; Peter Virnau; K. Binder
Colloidal systems are often modeled as fluids of hard particles (possibly with an additional soft attraction, e.g. caused by polymers also contained in the suspension). In simulations of such systems, the virial theorem cannot be straightforwardly applied to obtain the components of the pressure tensor. In systems confined by walls, it is hence also not straightforward to extract the excess energy due to the wall (the “wall tension”) from the pressure tensor anisotropy. A comparative evaluation of several methods to circumvent this problem is presented, using as examples fluids of hard spheres and the Asakura–Oosawa model of colloid-polymer mixtures with a size ratio q = 0.15 (for which the effect of the polymers can be integrated out to yield an effective attractive potential between the colloids). Factors limiting the accuracy of the various methods are carefully discussed, and controlling these factors very good mutual agreement between the various methods is found.
Physical Review E | 2012
Dorothea Wilms; Peter Virnau; S. Sengupta; K. Binder
Langevin dynamics simulations are used to study the effect of shear on a two-dimensional colloidal crystal (with implicit solvent) confined by structured parallel walls. When walls are sheared very slowly, only two or three crystalline layers next to the walls move along with them, while the inner layers of the crystal are only slightly tilted. At higher shear velocities, this inner part of the crystal breaks into several pieces with different orientations. The velocity profile across the slit is reminiscent of shear banding in flowing soft materials, where liquid and solid regions coexist; the difference, however, is that in the latter case the solid regions are glassy while here they are crystalline. At even higher shear velocities, the effect of the shearing becomes smaller again. Also the effective temperature near the walls (deduced from the velocity distributions of the particles) decreases again when the wall velocity gets very large. When the walls are placed closer together, thereby introducing an incommensurability between the periodicity of the confined crystal and the walls, a structure containing a soliton staircase arises in simulations without shear. Introducing shear increases the disorder in these systems until no solitons are visible anymore. Instead, similar structures like in the case without mismatch result. At high shear rates, configurations where the incommensurability of the crystalline structure is compensated by the creation of holes become relevant.
Journal of Physics: Condensed Matter | 2012
Dorothea Wilms; Sven Deutschländer; Ullrich Siems; Kerstin Franzrahe; Peter Henseler; Peter Keim; Nadine Schwierz; Peter Virnau; K. Binder; Georg Maret; Peter Nielaba
In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder. We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss the laser induced de-mixing for the three different possible couplings to the external potential. The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations. Due to misfits between multiples of the lattice parameter and the channel widths, a variety of ordered and disordered lattice structures have been observed. The resulting local lattice structures and defect probabilities are studied for various cross sections. The influence of a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior. Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal liquid. This work contains sections reviewing previous work by the authors as well as new, unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing regime in binary systems in external light fields, configurations for shear induced effects at structured walls, studies on the effect of confinement on the structures and defect densities in three-dimensional systems, the effect of confinement and barriers on two-dimensional flow and diffusion, and the effect of pinning sites on the diffusion.
Computer Physics Communications | 2011
Dorothea Wilms; Anke Winkler; Peter Virnau; K. Binder
Abstract The two-dimensional Ising model in the geometry of a long stripe can be regarded as a model system for the study of nanopores. As a quasi-one-dimensional system, it also exhibits a rather interesting “phase behavior”: At low temperatures the stripe is either filled with “liquid” or “gas” and “densities” are similar to those in the bulk. When we approach a “pseudo-critical point” (below the critical point of the bulk) at which the correlation length becomes comparable to the length of the stripe, several interfaces emerge and the systems contains multiple “liquid” and “gas” domains. The transition depends on the size of the stripe and occurs at lower temperatures for larger stripes. Our results are corroborated by simulations of the three-dimensional Asakura–Oosawa model in cylindrical geometry, which displays qualitatively similar behavior. Thus our simulations explain the physical basis for the occurrence of “hysteresis critical points” in corresponding experiments.
Molecular Physics | 2013
Dorothea Wilms; Peter Virnau; K. Binder
Computer simulations are presented where a model for a two-dimensional colloidal crystal confined to corrugated walls is exposed to a steady-state shear deformation. Following up on an earlier study, where average velocity profiles of the particles in the crystal across the slit have been obtained, we now analyse the time dependence of the particle motions and of the resulting shear forces. We discuss the extent to which the resulting irregular and damped oscillatory motions can be associated with stick-slip motions familiar from friction phenomena.
Physical Review Letters | 2010
Dorothea Wilms; Alexander Winkler; Peter Virnau; K. Binder
Physical Review E | 2012
Dorothea Wilms; Nigel B. Wilding; K. Binder
European Physical Journal-special Topics | 2011
K. Binder; Peter Virnau; Dorothea Wilms; Anke Winkler
European Physical Journal-special Topics | 2013
Sven Deutschländer; Kerstin Franzrahe; Birte Heinze; Peter Henseler; Peter Keim; Nadine Schwierz; Ullrich Siems; Peter Virnau; Dorothea Wilms; K. Binder; Georg Maret; Peter Nielaba