Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorothée Diogo is active.

Publication


Featured researches published by Dorothée Diogo.


Nature | 2014

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada; Di Wu; Gosia Trynka; Towfique Raj; Chikashi Terao; Katsunori Ikari; Yuta Kochi; Koichiro Ohmura; Akari Suzuki; Shinji Yoshida; Robert R. Graham; Arun Manoharan; Ward Ortmann; Tushar Bhangale; Joshua C. Denny; Robert J. Carroll; Anne E. Eyler; Jeffrey D. Greenberg; Joel M. Kremer; Dimitrios A. Pappas; Lei Jiang; Jian Yin; Lingying Ye; Ding Feng Su; Jian Yang; Gang Xie; E. Keystone; Harm-Jan Westra; Tonu Esko; Andres Metspalu

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Nature Genetics | 2012

High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis

Steve Eyre; John Bowes; Dorothée Diogo; Annette Lee; Anne Barton; Paul Martin; Alexandra Zhernakova; Eli A. Stahl; Sebastien Viatte; Kate McAllister; Christopher I. Amos; Leonid Padyukov; René E. M. Toes; Tom W J Huizinga; Cisca Wijmenga; Gosia Trynka; Lude Franke; Harm-Jan Westra; Lars Alfredsson; Xinli Hu; Cynthia Sandor; Paul I. W. de Bakker; Sonia Davila; Chiea Chuen Khor; Khai Koon Heng; Robert Andrews; Sarah Edkins; Sarah Hunt; Cordelia Langford; Deborah Symmons

Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.


American Journal of Human Genetics | 2014

Fine Mapping Seronegative and Seropositive Rheumatoid Arthritis to Shared and Distinct HLA Alleles by Adjusting for the Effects of Heterogeneity

Buhm Han; Dorothée Diogo; Steve Eyre; Henrik Källberg; Alexandra Zhernakova; John Bowes; Leonid Padyukov; Yukinori Okada; Miguel A. González-Gay; Solbritt Rantapää-Dahlqvist; Javier Martin; Tom W J Huizinga; Robert M. Plenge; Jane Worthington; Peter K. Gregersen; Lars Klareskog; Paul I. W. de Bakker; Soumya Raychaudhuri

Despite progress in defining human leukocyte antigen (HLA) alleles for anti-citrullinated-protein-autoantibody-positive (ACPA(+)) rheumatoid arthritis (RA), identifying HLA alleles for ACPA-negative (ACPA(-)) RA has been challenging because of clinical heterogeneity within clinical cohorts. We imputed 8,961 classical HLA alleles, amino acids, and SNPs from Immunochip data in a discovery set of 2,406 ACPA(-) RA case and 13,930 control individuals. We developed a statistical approach to identify and adjust for clinical heterogeneity within ACPA(-) RA and observed independent associations for serine and leucine at position 11 in HLA-DRβ1 (p = 1.4 × 10(-13), odds ratio [OR] = 1.30) and for aspartate at position 9 in HLA-B (p = 2.7 × 10(-12), OR = 1.39) within the peptide binding grooves. These amino acid positions induced associations at HLA-DRB1(∗)03 (encoding serine at 11) and HLA-B(∗)08 (encoding aspartate at 9). We validated these findings in an independent set of 427 ACPA(-) case subjects, carefully phenotyped with a highly sensitive ACPA assay, and 1,691 control subjects (HLA-DRβ1 Ser11+Leu11: p = 5.8 × 10(-4), OR = 1.28; HLA-B Asp9: p = 2.6 × 10(-3), OR = 1.34). Although both amino acid sites drove risk of ACPA(+) and ACPA(-) disease, the effects of individual residues at HLA-DRβ1 position 11 were distinct (p < 2.9 × 10(-107)). We also identified an association with ACPA(+) RA at HLA-A position 77 (p = 2.7 × 10(-8), OR = 0.85) in 7,279 ACPA(+) RA case and 15,870 control subjects. These results contribute to mounting evidence that ACPA(+) and ACPA(-) RA are genetically distinct and potentially have separate autoantigens contributing to pathogenesis. We expect that our approach might have broad applications in analyzing clinical conditions with heterogeneity at both major histocompatibility complex (MHC) and non-MHC regions.


PLOS Genetics | 2013

Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis.

Jing Cui; Eli A. Stahl; Saedis Saevarsdottir; Corinne Miceli; Dorothée Diogo; Gosia Trynka; Towfique Raj; Maša Umiċeviċ Mirkov; Helena Canhão; Katsunori Ikari; Chikashi Terao; Yukinori Okada; Sara Wedrén; Johan Askling; Hisashi Yamanaka; Shigeki Momohara; Atsuo Taniguchi; Koichiro Ohmura; Fumihiko Matsuda; Tsuneyo Mimori; Namrata Gupta; Manik Kuchroo; Ann W. Morgan; John D. Isaacs; Anthony G. Wilson; Kimme L. Hyrich; M M J Herenius; Marieke E. Doorenspleet; P.P. Tak; J. Bart A. Crusius

Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in 2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept (n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated with change in disease activity score (ΔDAS) in the etanercept subset of patients (P = 8×10−8), but not in the infliximab or adalimumab subsets (P>0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 3′ UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1×10−11 in 228 non-RA patients and P = 0.004 in 132 RA patients). Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210) and showed a non-significant trend for better ΔDAS in a subset of RA patients with gene expression data (n = 31, etanercept-treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8). Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84 genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of European ancestry.


PLOS ONE | 2014

Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene

Yukinori Okada; Dorothée Diogo; Jeffrey D. Greenberg; Faten Mouassess; Walid A L Achkar; Robert S. Fulton; Joshua C. Denny; Namrata Gupta; Daniel B. Mirel; Stacy B. Gabriel; Gang Li; Joel M. Kremer; Dimitrios A. Pappas; Robert J. Carroll; Anne E. Eyler; Gosia Trynka; Eli A. Stahl; Jing Cui; Richa Saxena; Marieke J. H. Coenen; Henk-Jan Guchelaar; Tom W J Huizinga; Philippe Dieudé; Xavier Mariette; Anne Barton; Helena Canhão; João Eurico Fonseca; Niek de Vries; Paul P. Tak; Larry W. Moreland

Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10−6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted.


American Journal of Human Genetics | 2013

Rare, Low-Frequency, and Common Variants in the Protein-Coding Sequence of Biological Candidate Genes from GWASs Contribute to Risk of Rheumatoid Arthritis.

Dorothée Diogo; Fina Kurreeman; Eli A. Stahl; Katherine P. Liao; Namrata Gupta; Jeffrey D. Greenberg; Manuel A. Rivas; Brendan Hickey; Jason Flannick; Brian Thomson; Candace Guiducci; Stephan Ripke; Ivan Adzhubey; Anne Barton; Joel M. Kremer; Lars Alfredsson; Shamil R. Sunyaev; Javier Martin; Alexandra Zhernakova; John Bowes; Steve Eyre; Katherine A. Siminovitch; Peter K. Gregersen; Jane Worthington; Lars Klareskog; Leonid Padyukov; Soumya Raychaudhuri; Robert M. Plenge

The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry. We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p = 0.007 and p = 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of coding variants with a nominal signal of association with RA (p < 0.05) after adjusting for the best signal of association at the loci (p(enrichment) = 6.4 × 10(-4)). For one locus containing CD2, we found that a missense variant, rs699738 (c.798C>A [p.His266Gln]), and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p = 4.6 × 10(-6)). Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing heritability of RA.


American Journal of Human Genetics | 2012

Use of a Multiethnic Approach to Identify Rheumatoid- Arthritis-Susceptibility Loci, 1p36 and 17q12

Fina Kurreeman; Eli A. Stahl; Yukinori Okada; Katherine P. Liao; Dorothée Diogo; Soumya Raychaudhuri; Jan Freudenberg; Yuta Kochi; Nikolaos A. Patsopoulos; Namrata Gupta; Cynthia Sandor; So Young Bang; Hye Soon Lee; Leonid Padyukov; Akari Suzuki; Katherine A. Siminovitch; Jane Worthington; Peter K. Gregersen; Laura B. Hughes; Richard J. Reynolds; S. Louis Bridges; Sang-Cheol Bae; Kazuhiko Yamamoto; Robert M. Plenge

We have previously shown that rheumatoid arthritis (RA) risk alleles overlap between different ethnic groups. Here, we utilize a multiethnic approach to show that we can effectively discover RA risk alleles. Thirteen putatively associated SNPs that had not yet exceeded genome-wide significance (p < 5 × 10(-8)) in our previous RA genome-wide association study (GWAS) were analyzed in independent sample sets consisting of 4,366 cases and 17,765 controls of European, African American, and East Asian ancestry. Additionally, we conducted an overall association test across all 65,833 samples (a GWAS meta-analysis plus the replication samples). Of the 13 SNPs investigated, four were significantly below the study-wide Bonferroni corrected p value threshold (p < 0.0038) in the replication samples. Two SNPs (rs3890745 at the 1p36 locus [p = 2.3 × 10(-12)] and rs2872507 at the 17q12 locus [p = 1.7 × 10(-9)]) surpassed genome-wide significance in all 16,659 RA cases and 49,174 controls combined. We used available GWAS data to fine map these two loci in Europeans and East Asians, and we found that the same allele conferred risk in both ethnic groups. A series of bioinformatic analyses identified TNFRSF14-MMEL1 at the 1p36 locus and IKZF3-ORMDL3-GSDMB at the 17q12 locus as the genes most likely associated with RA. These findings demonstrate empirically that a multiethnic approach is an effective strategy for discovering RA risk loci, and they suggest that combining GWASs across ethnic groups represents an efficient strategy for gaining statistical power.


Annals of the Rheumatic Diseases | 2015

High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci.

Kwangwoo Kim; So Young Bang; Hye Soon Lee; Soo-Kyung Cho; Chan Bum Choi; Yoon-Kyoung Sung; Tae-Hwan Kim; Jae-Bum Jun; Dae Hyun Yoo; Young Mo Kang; Seong-Kyu Kim; Chang Hee Suh; Seung Cheol Shim; Shin-Seok Lee; Jisoo Lee; Won Tae Chung; Jung Yoon Choe; Hyoung Doo Shin; Jong-Young Lee; Bok Ghee Han; Swapan K. Nath; Steve Eyre; John Bowes; Dimitrios A. Pappas; Joel M. Kremer; Miguel A. González-Gay; Luis Rodriguez-Rodriguez; Lisbeth Ärlestig; Yukinori Okada; Dorothée Diogo

OBJECTIVE A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. METHODS We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. RESULTS We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. CONCLUSIONS This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases.


PLOS ONE | 2015

TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits

Dorothée Diogo; Katherine P. Liao; Robert R. Graham; Robert S. Fulton; Jeffrey D. Greenberg; Stephen Eyre; John Bowes; Jing Cui; Annette Lee; Dimitrios A. Pappas; Joel M. Kremer; Anne Barton; Marieke J. H. Coenen; Barbara Franke; Lambertus A. Kiemeney; Xavier Mariette; Corrine Richard-Miceli; Helena Canhão; João Eurico Fonseca; Niek de Vries; Paul P. Tak; J. Bart A. Crusius; Michael T. Nurmohamed; Fina Kurreeman; Ted R. Mikuls; Yukinori Okada; Eli A. Stahl; David E. Larson; Tracie L. Deluca; Michelle O'Laughlin

Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3x10-21), A928V (rs35018800, OR = 0.53, P = 1.2x10-9), and I684S (rs12720356, OR = 0.86, P = 4.6x10-7). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6x10-18), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; Pomnibus = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases.


Current Opinion in Rheumatology | 2014

Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: recent findings and challenges.

Dorothée Diogo; Yukinori Okada; Robert M. Plenge

Purpose of reviewA significant number of loci implicated in rheumatoid arthritis (RA) susceptibility have been highlighted by genome-wide association studies (GWAS). Here, we review the recent advances of GWAS in understanding the genetic architecture of RA, and place these findings in the context of RA pathogenesis. Recent findingsAlthough the interpretation of GWAS findings in the context of the disease biology remains challenging, interesting observations can be highlighted. Integration of GWAS results with cell-type specific gene expression or epigenetic marks have highlighted regulatory T cells and CD4+ memory T cells as critical cell types in RA. In addition, many genes in RA loci are involved in the nuclear factor-kappaB signaling pathway or the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling pathway. The observation that these pathways are targeted by several approved drugs used to treat the symptoms of RA highlights the promises of human genetics to provide insights in the disease biology, and help identify new therapeutic targets. SummaryThese findings highlight the promises and need of future studies investigating causal genes and underlined mechanisms in GWAS loci to advance our understanding of RA.

Collaboration


Dive into the Dorothée Diogo's collaboration.

Top Co-Authors

Avatar

Eli A. Stahl

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peter K. Gregersen

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soumya Raychaudhuri

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Worthington

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Bowes

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge