Dorothee Kümmerer
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorothee Kümmerer.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Dorothee Saur; B. W. Kreher; Susanne Schnell; Dorothee Kümmerer; Philipp Kellmeyer; Magnus-Sebastian Vry; Roza Umarova; Mariacristina Musso; Volkmar Glauche; Stefanie Abel; Walter Huber; Michel Rijntjes; Jürgen Hennig; Cornelius Weiller
Built on an analogy between the visual and auditory systems, the following dual stream model for language processing was suggested recently: a dorsal stream is involved in mapping sound to articulation, and a ventral stream in mapping sound to meaning. The goal of the study presented here was to test the neuroanatomical basis of this model. Combining functional magnetic resonance imaging (fMRI) with a novel diffusion tensor imaging (DTI)-based tractography method we were able to identify the most probable anatomical pathways connecting brain regions activated during two prototypical language tasks. Sublexical repetition of speech is subserved by a dorsal pathway, connecting the superior temporal lobe and premotor cortices in the frontal lobe via the arcuate and superior longitudinal fascicle. In contrast, higher-level language comprehension is mediated by a ventral pathway connecting the middle temporal lobe and the ventrolateral prefrontal cortex via the extreme capsule. Thus, according to our findings, the function of the dorsal route, traditionally considered to be the major language pathway, is mainly restricted to sensory-motor mapping of sound to articulation, whereas linguistic processing of sound to meaning requires temporofrontal interaction transmitted via the ventral route.
Brain | 2013
Dorothee Kümmerer; Gesa Hartwigsen; Philipp Kellmeyer; Volkmar Glauche; Irina Mader; Stefan Klöppel; Julia Suchan; Hans-Otto Karnath; Cornelius Weiller; Dorothee Saur
Converging evidence from neuroimaging studies and computational modelling suggests an organization of language in a dual dorsal–ventral brain network: a dorsal stream connects temporoparietal with frontal premotor regions through the superior longitudinal and arcuate fasciculus and integrates sensorimotor processing, e.g. in repetition of speech. A ventral stream connects temporal and prefrontal regions via the extreme capsule and mediates meaning, e.g. in auditory comprehension. The aim of our study was to test, in a large sample of 100 aphasic stroke patients, how well acute impairments of repetition and comprehension correlate with lesions of either the dorsal or ventral stream. We combined voxelwise lesion-behaviour mapping with the dorsal and ventral white matter fibre tracts determined by probabilistic fibre tracking in our previous study in healthy subjects. We found that repetition impairments were mainly associated with lesions located in the posterior temporoparietal region with a statistical lesion maximum in the periventricular white matter in projection of the dorsal superior longitudinal and arcuate fasciculus. In contrast, lesions associated with comprehension deficits were found more ventral-anterior in the temporoprefrontal region with a statistical lesion maximum between the insular cortex and the putamen in projection of the ventral extreme capsule. Individual lesion overlap with the dorsal fibre tract showed a significant negative correlation with repetition performance, whereas lesion overlap with the ventral fibre tract revealed a significant negative correlation with comprehension performance. To summarize, our results from patients with acute stroke lesions support the claim that language is organized along two segregated dorsal–ventral streams. Particularly, this is the first lesion study demonstrating that task performance on auditory comprehension measures requires an interaction between temporal and prefrontal brain regions via the ventral extreme capsule pathway.
Brain | 2010
Dorothee Saur; Olaf Ronneberger; Dorothee Kümmerer; Irina Mader; Cornelius Weiller; Stefan Klöppel
An accurate prediction of system-specific recovery after stroke is essential to provide rehabilitation therapy based on the individual needs. We explored the usefulness of functional magnetic resonance imaging scans from an auditory language comprehension experiment to predict individual language recovery in 21 aphasic stroke patients. Subjects with an at least moderate language impairment received extensive language testing 2 weeks and 6 months after left-hemispheric stroke. A multivariate machine learning technique was used to predict language outcome 6 months after stroke. In addition, we aimed to predict the degree of language improvement over 6 months. 76% of patients were correctly separated into those with good and bad language performance 6 months after stroke when based on functional magnetic resonance imaging data from language relevant areas. Accuracy further improved (86% correct assignments) when age and language score were entered alongside functional magnetic resonance imaging data into the fully automatic classifier. A similar accuracy was reached when predicting the degree of language improvement based on imaging, age and language performance. No prediction better than chance level was achieved when exploring the usefulness of diffusion weighted imaging as well as functional magnetic resonance imaging acquired two days after stroke. This study demonstrates the high potential of current machine learning techniques to predict system-specific clinical outcome even for a disease as heterogeneous as stroke. Best prediction of language recovery is achieved when the brain activation potential after system-specific stimulation is assessed in the second week post stroke. More intensive early rehabilitation could be provided for those with a predicted poor recovery and the extension to other systems, for example, motor and attention seems feasible.
Brain | 2014
Markus Hoeren; Dorothee Kümmerer; Tobias Bormann; Lena Beume; Vera M. Ludwig; Magnus-Sebastian Vry; Irina Mader; Michel Rijntjes; Christoph P. Kaller; Cornelius Weiller
Apraxia is a cognitive disorder of skilled movements that characteristically affects the ability to imitate meaningless gestures, or to pantomime the use of tools. Despite substantial research, the neural underpinnings of imitation and pantomime have remained debated. An influential model states that higher motor functions are supported by different processing streams. A dorso-dorsal stream may mediate movements based on physical object properties, like reaching or grasping, whereas skilled tool use or pantomime rely on action representations stored within a ventro-dorsal stream. However, given variable results of past studies, the role of the two streams for imitation of meaningless gestures has remained uncertain, and the importance of the ventro-dorsal stream for pantomime of tool use has been questioned. To clarify the involvement of ventral and dorsal streams in imitation and pantomime, we performed voxel-based lesion-symptom mapping in a sample of 96 consecutive left-hemisphere stroke patients (mean age ± SD, 63.4 ± 14.8 years, 56 male). Patients were examined in the acute phase after ischaemic stroke (after a mean of 5.3, maximum 10 days) to avoid interference of brain reorganization with a reliable lesion-symptom mapping as best as possible. Patients were asked to imitate 20 meaningless hand and finger postures, and to pantomime the use of 14 common tools depicted as line drawings. Following the distinction between movement engrams and action semantics, pantomime errors were characterized as either movement or content errors, respectively. Whereas movement errors referred to incorrect spatio-temporal features of overall recognizable movements, content errors reflected an inability to associate tools with their prototypical actions. Both imitation and pantomime deficits were associated with lesions within the lateral occipitotemporal cortex, posterior inferior parietal lobule, posterior intraparietal sulcus and superior parietal lobule. However, the areas specifically related to the dorso-dorsal stream, i.e. posterior intraparietal sulcus and superior parietal lobule, were more strongly associated with imitation. Conversely, in contrast to imitation, pantomime deficits were associated with ventro-dorsal regions such as the supramarginal gyrus, as well as brain structures counted to the ventral stream, such as the extreme capsule. Ventral stream involvement was especially clear for content errors which were related to anterior temporal damage. However, movement errors were not consistently associated with a specific lesion location. In summary, our results indicate that imitation mainly relies on the dorso-dorsal stream for visuo-motor conversion and on-line movement control. Conversely, pantomime additionally requires ventro-dorsal and ventral streams for access to stored action engrams and retrieval of tool-action relationships.
NeuroImage | 2009
Stefanie Abel; Katharina Dressel; Ruth Bitzer; Dorothee Kümmerer; Irina Mader; Cornelius Weiller; Walter Huber
In picture-word interference paradigms, the picture naming process is influenced by an additional presentation of linguistic distractors. Naming response times (RTs) are speeded (facilitation) by associatively-related and phonologically-related words when compared to unrelated words, while they are slowed down by categorically-related words (inhibition), given that distractor onsets occur at appropriate stimulus onset asynchronies (SOAs). In the present study with healthy subjects, we for the first time integrated all four auditorily presented distractor types into a single paradigm at an SOA of -200 ms, in order to directly compare behavioral and neural interference effects between them. The behavioral study corroborated results of previous studies and revealed that associatively-related distractors speeded RTs even more than phonologically-related distractors, thereby becoming equally fast as naming without distractors. Distractors were assumed to specifically enhance activation of brain areas corresponding to processing stages as determined in a cognitive model of word production (Indefrey, P., Levelt, W.J.M., 2004. The spatial and temporal signatures of word production components. Cognition 92, 101-144.). Functional magnetic resonance imaging (fMRI) at 3 T revealed activation of left superior temporal gyrus exclusively for phonologically-related distractors, and activation of left or right lingual gyrus exclusively for associatively-related and categorically-related distractors, respectively. Moreover, phonologically-related distractors elicited phonological-phonetic networks, and both semantic distractors evoked areas associated with mental imagery, semantics, and episodic memory retrieval and associations. While processes involved in distractor inhibition (e.g., conflict/competition monitoring) and high articulatory demands were observed for categorically-related distractors, priming of articulatory planning was revealed for associatively-related distractors. We conclude that activations of neural networks as obtained by the fMRI interference paradigm can be predicted from a cognitive model.
Aphasiology | 2010
Katharina Dressel; Walter Huber; Lars Frings; Dorothee Kümmerer; Dorothee Saur; Irina Mader; Michael Hüll; Cornelius Weiller; Stefanie Abel
Background: Studies on anomia treatment in semantic dementia demonstrate that re-learning is possible, but maintenance and generalisation of improvements are limited. Changes in cortical activation associated with anomia treatment have already been demonstrated in aphasic patients after stroke. Recovery of brain functions under the impact of deficit-specific treatment in semantic dementia has not been explored yet. Nevertheless, recent activation studies using language tasks in patients with neurodegenerative diseases report altered activation patterns, involving diverse brain regions ipsi- or contralateral to the primarily affected left hemisphere. Aims: The purpose of the present study was to investigate if phonological and semantic cueing hierarchies established for naming therapy in aphasia were also effective in a patient with semantic dementia. Moreover, we aimed to examine changes of brain activity associated with anomia treatment. Methods & Procedures: One individual with semantic dementia participated in the present study. Over a period of 4 weeks the participant received an intensive model-oriented treatment with phonological and semantic cueing hierarchies. Two pre-tests and two post-tests (one immediately after training and one 2 months later) were administered. The second pre-test and both follow-ups were registered inside the scanner. Outcomes & Results: Behaviourally, both treatments resulted in specific training effects, which subsequently decreased over time. Concerning functional magnetic resonance imaging data, improved naming following therapy was mirrored by changes in cortical activity, predominantly located in right superior and inferior temporal gyrus. Conclusions: Cueing hierarchies were successful, resulting in specific and immediate treatment effects, corroborating previous treatment studies in semantic dementia. Treatment-induced changes in cortical activity were mainly concentrated in right temporal cortex. Since right-sided modulation of cortical activity was associated with training-induced improvements in task performance, it may reflect right hemispheric compensatory mechanisms in this participant.
Cerebral Cortex | 2016
Markus Martin; Lena Beume; Dorothee Kümmerer; Charlotte S. M. Schmidt; Tobias Bormann; Andrea Dressing; Vera M. Ludwig; Roza Umarova; Irina Mader; Michel Rijntjes; Christoph P. Kaller; Cornelius Weiller
Impaired tool use despite preserved basic motor functions occurs after stroke in the context of apraxia, a cognitive motor disorder. To elucidate the neuroanatomical underpinnings of different tool use deficits, prospective behavioral assessments of 136 acute left-hemisphere stroke patients were combined with lesion delineation on magnetic resonance imaging (MRI) images for voxel-based lesion-symptom mapping. Deficits affecting both the selection of the appropriate recipient for a given tool (ToolSelect, e.g., choosing the nail for the hammer), and the performance of the typical tool-associated action (ToolUse, e.g., hammering in the nail) were associated with ventro-dorsal stream lesions, particularly within inferior parietal lobule. However, ToolSelect compared with ToolUse deficits were specifically related to damage within ventral stream regions including anterior temporal lobe. Additional retrospective error dichotomization based on the videotaped performances of ToolUse revealed that spatio-temporal errors (movement errors) were mainly caused by inferior parietal damage adjacent to the intraparietal sulcus while content errors, that is, perplexity, unrecognizable, or semantically incorrect movements, resulted from lesions within supramarginal gyrus and superior temporal lobe. In summary, our results suggest that in the use of tools, conceptual and production-related aspects can be differentiated and are implemented in anatomically distinct streams.
Neuroscience Letters | 2009
Stefanie Abel; Katharina Dressel; Dorothee Kümmerer; Dorothee Saur; Irina Mader; Cornelius Weiller; Walter Huber
In this functional magnetic resonance imaging study, brain activations of correct and erroneous picture naming responses were investigated in 34 healthy subjects using an event-related design. We regarded main effects comprising all (ALL), false (FAL), or correct (COR) responses only. Despite the rare error occurrence, activation maxima differed between all three main effects. To investigate the influence of naming accuracy on brain activations, we therefore (1) considered the number of errors as covariates, and (2) compared carefully matched sets of FAL and COR for subjects with higher error rates. As a result, activations in left middle/medial frontal gyrus were significantly correlated with number of errors. The neural substrate of naming errors appears to be separated in several subsystems of activation: first bilateral activations in anterior cingulate cortex (ACC), prefrontal, and premotor regions associated with monitoring processes; second the involvement of right (para)hippocampal gyrus most likely indicating post-error processes of retention; third perisylvian (especially inferior frontal) language areas. These activations were not restricted to false responses, but were with less intensity also recruited for correct responses. In contrast, there was no specific activation for successful name retrieval in correct trials. To conclude, the underlying processing mechanisms of erroneous and correct naming responses are strikingly similar; self-monitoring appears to be a general mechanism of the naming process.
Dementia and Geriatric Cognitive Disorders | 2010
Lars Frings; Katharina Dressel; Stefanie Abel; Dorothee Saur; Dorothee Kümmerer; Irina Mader; Cornelius Weiller; Michael Hüll
The precuneus is part of the default network of the human brain, which exhibits a high level of activity during the resting state and lower activity during task-related behavior. Typically, the posterior midline areas show this characteristic response in functional magnetic resonance imaging (fMRI) studies. In Alzheimer’s disease (AD) and mild cognitive impairment (MCI), subjects exhibit a lack of this typical deactivation. The interpretation of these findings, however, is obfuscated by the presence of local pathology and atrophy in AD. In contrast to AD, in patients with early frontotemporal lobar degeneration (FTLD), the precuneus is virtually free of local neuropathology. In this study, we demonstrate reduced fMRI signal in the precuneus in a group of patients with FTLD during a confrontation naming task. We show that this effect in FTLD patients was (1) similar to that observed in AD and MCI and (2) not related to the degree of gray matter atrophy in the precuneus. We hypothesize that reduced deactivation of the default network is not related to local pathology but to a lack of connectivity, which decreases in both FTLD and AD, the major cortical dementias.
Cerebral Cortex | 2018
Andrea Dressing; Kai Nitschke; Dorothee Kümmerer; Tobias Bormann; Lena Beume; Charlotte S. M. Schmidt; Vera M. Ludwig; Irina Mader; Klaus Willmes; Michel Rijntjes; Christoph P. Kaller; Cornelius Weiller; Markus Martin
Imitation of tool-use gestures (transitive; e.g., hammering) and communicative emblems (intransitive; e.g., waving goodbye) is frequently impaired after left-hemispheric lesions. We aimed 1) to identify lesions related to deficient transitive or intransitive gestures, 2) to delineate regions associated with distinct error types (e.g., hand configuration, kinematics), and 3) to compare imitation to previous data on pantomimed and actual tool use. Of note, 156 patients (64.3 ± 14.6 years; 56 female) with first-ever left-hemispheric ischemic stroke were prospectively examined 4.8 ± 2.0 days after symptom onset. Lesions were delineated on magnetic resonance imaging scans for voxel-based lesion-symptom mapping. First, while inferior-parietal lesions affected both gesture types, specific associations emerged between intransitive gesture deficits and anterior temporal damage and between transitive gesture deficits and premotor and occipito-parietal lesions. Second, impaired hand configurations were related to anterior intraparietal damage, hand/wrist-orientation errors to premotor lesions, and kinematic errors to inferior-parietal/occipito-temporal lesions. Third, premotor lesions impacted more on transitive imitation compared with actual tool use, pantomimed and actual tool use were more susceptible to lesioned insular cortex and subjacent white matter. In summary, transitive and intransitive gestures differentially rely on ventro-dorsal and ventral streams due to higher demands on temporo-spatial processing (transitive) or stronger reliance on semantic information (intransitive), respectively.