Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorothée Missé is active.

Publication


Featured researches published by Dorothée Missé.


Journal of Virology | 2015

Biology of Zika Virus Infection in Human Skin Cells

Rodolphe Hamel; Ophélie Dejarnac; Sineewanlaya Wichit; Peeraya Ekchariyawat; Aymeric Neyret; Natthanej Luplertlop; Manuel Perera-Lecoin; Pornapat Surasombatpattana; Loïc Talignani; Frédéric Thomas; Van-Mai Cao-Lormeau; Valérie Choumet; Laurence Briant; Philippe Desprès; Ali Amara; Hans Yssel; Dorothée Missé

ABSTRACT Zika virus (ZIKV) is an emerging arbovirus of the Flaviviridae family, which includes dengue, West Nile, yellow fever, and Japanese encephalitis viruses, that causes a mosquito-borne disease transmitted by the Aedes genus, with recent outbreaks in the South Pacific. Here we examine the importance of human skin in the entry of ZIKV and its contribution to the induction of antiviral immune responses. We show that human dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells are permissive to the most recent ZIKV isolate, responsible for the epidemic in French Polynesia. Several entry and/or adhesion factors, including DC-SIGN, AXL, Tyro3, and, to a lesser extent, TIM-1, permitted ZIKV entry, with a major role for the TAM receptor AXL. The ZIKV permissiveness of human skin fibroblasts was confirmed by the use of a neutralizing antibody and specific RNA silencing. ZIKV induced the transcription of Toll-like receptor 3 (TLR3), RIG-I, and MDA5, as well as several interferon-stimulated genes, including OAS2, ISG15, and MX1, characterized by strongly enhanced beta interferon gene expression. ZIKV was found to be sensitive to the antiviral effects of both type I and type II interferons. Finally, infection of skin fibroblasts resulted in the formation of autophagosomes, whose presence was associated with enhanced viral replication, as shown by the use of Torin 1, a chemical inducer of autophagy, and the specific autophagy inhibitor 3-methyladenine. The results presented herein permit us to gain further insight into the biology of ZIKV and to devise strategies aiming to interfere with the pathology caused by this emerging flavivirus. IMPORTANCE Zika virus (ZIKV) is an arbovirus belonging to the Flaviviridae family. Vector-mediated transmission of ZIKV is initiated when a blood-feeding female Aedes mosquito injects the virus into the skin of its mammalian host, followed by infection of permissive cells via specific receptors. Indeed, skin immune cells, including dermal fibroblasts, epidermal keratinocytes, and immature dendritic cells, were all found to be permissive to ZIKV infection. The results also show a major role for the phosphatidylserine receptor AXL as a ZIKV entry receptor and for cellular autophagy in enhancing ZIKV replication in permissive cells. ZIKV replication leads to activation of an antiviral innate immune response and the production of type I interferons in infected cells. Taken together, these results provide the first general insights into the interaction between ZIKV and its mammalian host.


Nature Biotechnology | 2003

Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes

Loïc Martin; François Stricher; Dorothée Missé; Francesca Sironi; Martine Pugnière; Philippe Barthe; R. Prado-Gotor; Isabelle Freulon; Xavier Magne; Christian Roumestand; André Ménez; Paolo Lusso; Francisco Veas; Claudio Vita

The conserved surfaces of the human immunodeficiency virus (HIV)-1 envelope involved in receptor binding represent potential targets for the development of entry inhibitors and neutralizing antibodies. Using structural information on a CD4-gp120-17b antibody complex, we have designed a 27-amino acid CD4 mimic, CD4M33, that presents optimal interactions with gp120 and binds to viral particles and diverse HIV-1 envelopes with CD4-like affinity. This mini-CD4 inhibits infection of both immortalized and primary cells by HIV-1, including primary patient isolates that are generally resistant to inhibition by soluble CD4. Furthermore, CD4M33 possesses functional properties of CD4, including the ability to unmask conserved neutralization epitopes of gp120 that are cryptic on the unbound glycoprotein. CD4M33 is a prototype of inhibitors of HIV-1 entry and, in complex with envelope proteins, a potential component of vaccine formulations, or a molecular target in phage display technology to develop broad-spectrum neutralizing antibodies.


Trends in Ecology and Evolution | 2009

The ecological significance of manipulative parasites.

Thierry Lefèvre; Camille Lebarbenchon; Michel Gauthier-Clerc; Dorothée Missé; Robert Poulin; Frédéric Thomas

The diversity of ways in which host manipulation by parasites interferes with ecological and evolutionary processes governing biotic interactions has been recently documented, and indicates that manipulative parasites are full participants in the functioning of ecosystems. Phenotypic alterations in parasitised hosts modify host population ecology, apparent competition processes, food web structure and energy and nutrient flow between habitats, as well as favouring habitat creation. As is usually the case in ecology, these phenomena can be greatly amplified by a series of secondary consequences (cascade effects). Here we review the ecological relevance of manipulative parasites in ecosystems and propose directions for further research.


PLOS Pathogens | 2011

Induction of a Peptide with Activity against a Broad Spectrum of Pathogens in the Aedes aegypti Salivary Gland, following Infection with Dengue Virus

Natthanej Luplertlop; Pornapat Surasombatpattana; Sirilaksana Patramool; Emilie Dumas; Ladawan Wasinpiyamongkol; Laure Saune; Rodolphe Hamel; Eric Bernard; Denis Sereno; Frédéric Thomas; David Piquemal; Hans Yssel; Laurence Briant; Dorothée Missé

The ultimate stage of the transmission of Dengue Virus (DENV) to man is strongly dependent on crosstalk between the virus and the immune system of its vector Aedes aegypti (Ae. aegypti). Infection of the mosquitos salivary glands by DENV is the final step prior to viral transmission. Therefore, in the present study, we have determined the modulatory effects of DENV infection on the immune response in this organ by carrying out a functional genomic analysis of uninfected salivary glands and salivary glands of female Ae. aegypti mosquitoes infected with DENV. We have shown that DENV infection of salivary glands strongly up-regulates the expression of genes that encode proteins involved in the vectors innate immune response, including the immune deficiency (IMD) and Toll signalling pathways, and that it induces the expression of the gene encoding a putative anti-bacterial, cecropin-like, peptide (AAEL000598). Both the chemically synthesized non-cleaved, signal peptide-containing gene product of AAEL000598, and the cleaved, mature form, were found to exert, in addition to antibacterial activity, anti-DENV and anti-Chikungunya viral activity. However, in contrast to the mature form, the immature cecropin peptide was far more effective against Chikungunya virus (CHIKV) and, furthermore, had strong anti-parasite activity as shown by its ability to kill Leishmania spp. Results from circular dichroism analysis showed that the immature form more readily adopts a helical conformation which would help it to cause membrane permeabilization, thus permitting its transfer across hydrophobic cell surfaces, which may explain the difference in the anti-pathogenic activity between the two forms. The present study underscores not only the importance of DENV-induced cecropin in the innate immune response of Ae. aegypti, but also emphasizes the broad-spectrum anti-pathogenic activity of the immature, signal peptide-containing form of this peptide.


Parasites & Vectors | 2011

Implication of haematophagous arthropod salivary proteins in host-vector interactions

Albin Fontaine; Ibrahima Diouf; Nawal Bakkali; Dorothée Missé; Frédéric Pagès; Thierry Fusai; Christophe Rogier; Lionel Almeras

The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that are liable to improve host protection against vector-borne diseases.


Journal of Immunology | 2007

IL-22 Participates in an Innate Anti-HIV-1 Host-Resistance Network through Acute-Phase Protein Induction

Dorothée Missé; Hans Yssel; Daria Trabattoni; Christelle Oblet; Sergio Lo Caputo; Francesco Mazzotta; Jérôme Pène; Jean-Paul Gonzalez; Mario Clerici; Francisco Veas

Certain individuals are resistant to HIV-1 infection, despite repeated exposure to the virus. Although protection against HIV-1 infection in a small proportion of Caucasian individuals is associated with mutant alleles of the CCR5 HIV-1 coreceptor, the molecular mechanism underlying resistance in repeatedly HIV-1-exposed, uninfected individuals (EU) is unclear. In this study, we performed complementary transcriptome and proteome analyses on peripheral blood T cells, and plasma or serum from EU, their HIV-1-infected sexual partners, and healthy controls, all expressing wild-type CCR5. We report that activated T cells from EU overproduce several proteins involved in the innate immunity response, principally those including high levels of peroxiredoxin II, a NK-enhancing factor possessing strong anti-HIV activity, and IL-22, a cytokine involved in the production of acute-phase proteins such as the acute-phase serum amyloid A (A-SAA). Cell supernatants and serum levels of these proteins were up-regulated in EU. Moreover, a specific biomarker for EU detected in plasma was identified as an 8.6-kDa A-SAA cleavage product. Incubation of in vitro-generated myeloid immature dendritic cells with A-SAA resulted in CCR5 phosphorylation, down-regulation of CCR5 expression, and strongly decreased susceptibility of these cells to in vitro infection with a primary HIV-1 isolate. Taken together, these results suggest new correlates of EU protection and identify a cascade involving IL-22 and the acute phase protein pathway that is associated with innate host resistance to HIV infection.


Infection, Genetics and Evolution | 2011

Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses

Pornapat Surasombatpattana; Rodolphe Hamel; Sirilaksana Patramool; Natthanej Luplertlop; Frédéric Thomas; Philippe Desprès; Laurence Briant; Hans Yssel; Dorothée Missé

Dengue virus (DENV) infection is the most prevalent mosquito-borne viral diseases in the world. Vector-mediated transmission of DENV is initiated when a blood-feeding female Aedes mosquito injects saliva, together with the virus, into the skin of its mammalian host. Understanding the role of skin immune cells in the activation of innate immunity to DENV at the early times of infection is a critical issue that remains to be investigated. The purpose of our study was to assess the contribution of human keratinocytes as potential host cells to DENV in the activation of immune responses at the anatomical site of mosquito bite. We show that primary keratinocytes support DENV replication with the production of negative-stranded viral RNAs inside the infected cells. In the course of DENV life cycle, we observed the activation of host genes involved in the antiviral immune responses such as intracellular RNA virus sensors Toll-Like Receptor-3, Retinoic Acid Inducible Gene-I, Melanoma Differentiation Associated gene-5 and the RNA-dependent protein kinase R. DENV infection of primary keratinocytes also resulted in up-regulation of the expression of the antiviral Ribonuclease L gene, which subsequently led to enhanced production of IFN-β and IFN-γ. Depending on stages of viral replication, we observed the activation of host genes encoding the antimicrobial proteins β-defensin and RNase 7 in infected keratinocytes. Our data demonstrate for the first time the permissiveness of human epidermal keratinocytes to DENV infection. Remarkably, DENV replication in keratinocytes contributes to the establishment of antiviral innate immunity that might occur in the early times after the bite of mosquito.


Biology Letters | 2012

Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common.

Frédéric Thomas; Kevin D. Lafferty; Jacques Brodeur; Eric Elguero; Michel Gauthier-Clerc; Dorothée Missé

We explored associations between the common protozoan parasite Toxoplasma gondii and brain cancers in human populations. We predicted that T. gondii could increase the risk of brain cancer because it is a long-lived parasite that encysts in the brain, where it provokes inflammation and inhibits apoptosis. We used a medical geography approach based on the national incidence of brain cancers and seroprevalence of T. gondii. We corrected reports of incidence for national gross domestic product because wealth probably increases the ability to detect cancer. We also included gender, cell phone use and latitude as variables in our initial models. Prevalence of T. gondii explained 19 per cent of the residual variance in brain cancer incidence after controlling for the positive effects of gross domestic product and latitude among nations. Infection with T. gondii was associated with a 1.8-fold increase in the risk of brain cancers across the range of T. gondii prevalence in our dataset (4–67%). These results, though correlational, suggest that T. gondii should be investigated further as a possible oncogenic pathogen of humans.


Evolutionary Applications | 2013

Applying ecological and evolutionary theory to cancer: a long and winding road

Frédéric Thomas; Daniel Fisher; Philippe Fort; Jean-Pierre Marie; Simon Daoust; Benjamin Roche; Christoph Grunau; Céline Cosseau; Guillaume Mitta; Stephen Baghdiguian; François Rousset; Patrice Lassus; Eric Assenat; Damien Grégoire; Dorothée Missé; Alexander Lorz; Frédérique Billy; William Vainchenker; François Delhommeau; Serge Koscielny; Ruoping Tang; Fanny Fava; Annabelle Ballesta; Thomas Lepoutre; Liliana Krasinska; Vjekoslav Dulic; Peggy Raynaud; Philippe Blache; Corinne Quittau-Prévostel; Emmanuel Vignal

Since the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology. The objective of this introduction is first to describe the basic ideas and concepts linking evolutionary biology to cancer. We then present four major fronts where the evolutionary perspective is most developed, namely laboratory and clinical models, mathematical models, databases, and techniques and assays. Finally, we discuss several of the most promising challenges and future prospects in this interdisciplinary research direction in the war against cancer.


Virology | 2016

The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-β production and apoptosis induction.

Etienne Frumence; Marjolaine Roche; Pascale Krejbich-Trotot; Chaker El-Kalamouni; Brice Nativel; Philippe Rondeau; Dorothée Missé; Gilles Gadea; Wildriss Viranaicken; Philippe Desprès

Zika virus (ZIKV) is an emerging flavivirus since the first epidemics in South Pacific in 2007. The recent finding that ZIKV is now circulating in Western Hemisphere and can be associated to severe human diseases, warrants the need for its study. Here we evaluate the susceptibility of human lung epithelial A549 cells to South Pacific epidemic strain of ZIKV isolated in 2013. We showed that ZIKV growth in A549 cells is greatly efficient. ZIKV infection resulted in the secretion of IFN-β followed by the expression of pro-inflammatory cytokines such as IL-1β, and transcriptional activity of IFIT genes. At the maximum of virus progeny production, ZIKV triggers mitochondrial apoptosis through activation of caspases-3 and -9. Whereas at early infection times, the rapid release of IFN-β which exerts an antiviral effect against ZIKV might delay apoptosis in infected cells.

Collaboration


Dive into the Dorothée Missé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodolphe Hamel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Veas

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Benjamin Roche

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pornapat Surasombatpattana

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marion Vittecoq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Renaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sineewanlaya Wichit

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge