Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorothy A. Steane is active.

Publication


Featured researches published by Dorothy A. Steane.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Ecology | 2009

A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences

Rc Barbour; Jm O'Reilly-Wapstra; David W. De Little; Gregory J. Jordan; Dorothy A. Steane; Jonathon R. Humphreys; Joseph K. Bailey; Thomas G. Whitham; Bm Potts

Knowledge of the manner in which genetic variation within a tree species affects associated communities and ecosystem processes across its entire range is important for understanding how geographic mosaics of genetic interactions might develop and support different communities. While numerous studies have investigated the community and ecosystem consequences of genetic variation at the hybrid cross type or genotype level within a species, none has investigated the community-level effects of intraspecific genetic variation across the geographic range of a widespread species. This is the scale at which geographic mosaics of coevolution are hypothesized to exist. Studies at this level are particularly important for foundation tree species, which typically support numerous microbial, fungal, plant, and animal communities. We studied genetic variation across eight geographical races of the forest tree Eucalyptus globulus representing its natural distribution across southeastern Australia. The study was conducted in a 15-year-old common garden trial based on families derived from single-tree open-pollinated seed collections from the wild. Neutral molecular genetic variation within E. globulus was also assessed and compared with genetic divergence in the phenotypic and community traits. Three major findings emerged. First, we found significant genetically based, hierarchical variation in associated communities corresponding to geographical races of E. globulus and families within races. Second, divergence in foliar communities at the racial level was associated with genetically based divergence in specific leaf morphological and chemical traits that have known defensive functions. Third, significant positive correlations between canopy community dissimilarity and both neutral molecular genetic and leaf quantitative genetic dissimilarity at the race level supported a genetic similarity rule. Our results argue that genetic variation within foundation tree species has the potential to be a significant driver of the geographical mosaics of variation typical of forest communities, which could have important ecological and evolutionary implications.


Tree Genetics & Genomes | 2006

A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits

Dorothy A. Steane; Natalie Conod; Rebecca C. Jones; Re Vaillancourt; Bm Potts

Eucalyptus globulus (Myrtaceae) is a forest tree native to southeastern Australia, but is grown globally for pulpwood and timber. Eight microsatellite loci were used to determine the degree of selectively neutral differentiation between native populations of the geographic races of E. globulus that are used in a national breeding programme. Spatial differentiation was detected among 340 samples from across the species range (FST=0.09±0.02). Analysis of molecular variance showed that there was significant variation between the races, and an unweighted pair group method with arithmetic mean analysis of Nei’s genetic distance between races showed that geographically proximal races tended to be more closely related than geographically distant races. This contrasted markedly with analyses based on quantitative genetic data, where some races appeared to be highly divergent from their geographically closest neighbours. Comparison of racial differentiation based on quantitative (QST) and molecular (FST) data suggested that at least five of the quantitative traits used for defining races of E. globulus have been influenced by natural selection, resulting in cases of both phenotypic divergence of parapatric races and phenotypic convergence of allopatric races. We conclude that selectively neutral molecular markers are more useful than quantitative genetic data for identifying the evolutionary affinities and lineages within E. globulus. However, both sources of information should be used in defining evolutionarily important units for conservation. The population structure observed in E. globulus has important consequences for future association studies and may also affect breeding strategies if significant genome co-adaptation has occurred.


American Journal of Botany | 1999

Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae).

Ge McKinnon; Dorothy A. Steane; Bm Potts; Re Vaillancourt

Seventy-eight polymorphic cpDNA (chloroplast DNA) characters were found in 13 closely related taxa from Eucalyptus series Amygdalinae (subgenus Monocalyptus) and seven potential outgroup taxa. The strict consensus of six cladograms generated from cpDNA data confirmed monophyly of Monocalyptus. However, cpDNA phylogeny within Monocalyptus was incongruent with taxonomic classification, being more related to geography, even when accessions were from divergent series. Monocalyptus cpDNA formed two major clades. On the island of Tasmania cpDNA was restricted to a single clade, exhibited very little variation, and was phylogenetically related to cpDNA found in central and western Victoria. In contrast, cpDNA of mainland monocalypt taxa was more variable, even within the Amygdalinae. Four out of six Tasmanian Amygdalinae species were polymorphic. The difference between cpDNA of replicates was often greater than differences between species from different series. The low level of cpDNA variation and extensive morphological intergradation between the Tasmanian endemics suggest recent speciation. However, the transfer of cpDNA through hybridization between lineages is the most likely explanation for the observed sharing of cpDNA across series. This study highlights that the geographical pattern to cpDNA variation in Eucalyptus may be an important source of information on past plant distributions in Australia.


Australian Journal of Botany | 2001

Chloroplast DNA phylogeography of Eucalyptus globulus

Jules S. Freeman; Hd Jackson; Dorothy A. Steane; Ge McKinnon; Gw Dutkowski; Bm Potts; Re Vaillancourt

The pattern of variability in chloroplast DNA (cpDNA) of Eucalyptus globulus Labill. (Myrtaceae) was studied using 270 samples from southern Australia. Forty variable sequence characters were found, defining 105 haplotypes. Haplotypes were assigned to three major cpDNA clades based on their phylogeny. The pattern of cpDNA variation did not conform to subspecies boundaries; however, there was a strong geographic structure to the distribution of clades and haplotypes. One clade (JC) was geographically central and widespread and was found in 163 samples from Tasmania and continental Australia. Less-common clades occurred in more localised regions— southern (Js, 77 samples) and eastern (Jet, 12 samples). The distribution of the Jet and Js clades coincides with hypothesised glacial refugia in Tasmania, suggesting limited seed-mediated dispersal since deglaciation.


Molecular Phylogenetics and Evolution | 2011

Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping

Dorothy A. Steane; Dean Nicolle; Carolina Sansaloni; Cesar D. Petroli; Jason Carling; Andrzej Kilian; Alexander Andrew Myburg; Dario Grattapaglia; Re Vaillancourt

A set of over 8000 Diversity Arrays Technology (DArT) markers was tested for its utility in high-resolution population and phylogenetic studies across a range of Eucalyptus taxa. Small-scale population studies of Eucalyptus camaldulensis, Eucalyptus cladocalyx, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus nitens, Eucalyptus pilularis and Eucalyptus urophylla demonstrated the potential of genome-wide genotyping with DArT markers to differentiate species, to identify interspecific hybrids and to resolve biogeographic disjunctions within species. The population genetic studies resolved geographically partitioned clusters in E. camaldulensis, E. cladocalyx, E. globulus and E. urophylla that were congruent with previous molecular studies. A phylogenetic study of 94 eucalypt species provided results that were largely congruent with traditional taxonomy and ITS-based phylogenies, but provided more resolution within major clades than had been obtained previously. Ascertainment bias (the bias introduced in a phylogeny from using markers developed in a small sample of the taxa that are being studied) was not detected. DArT offers an unprecedented level of resolution for population genetic, phylogenetic and evolutionary studies across the full range of Eucalyptus species.


Molecular Ecology | 1999

Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae)

Hd Jackson; Dorothy A. Steane; Bm Potts; Re Vaillancourt

Four highly differentiated chloroplast DNA (cpDNA) lineages were identified in the forest tree species Eucalyptus globulus Labill. (Myrtaceae) in Australia using restriction site polymorphisms from Southern analysis. The cpDNA variation did not conform with ssp. boundaries, yet there was a strong geographical pattern to the distribution of the lineages. One lineage (C) was geographically central and widespread, whereas the other three lineages were found in peripheral populations: Western (W), Northern (N) and Southern (S). Thirteen haplotypes were detected in E. globulus, seven of which belonged to clade C. At least three of the cpDNA lineages (C, N and S) were shared extensively with other species. On the east coast of the island of Tasmania, there was a major north–south difference in cpDNA in the virtually continuous distribution of E. globulus. Northern populations harboured haplotypes from clade C while southeastern populations harboured a single haplotype from clade S. This difference was also reflected in several co‐occurring endemic species. It is argued that the extensive cpDNA differentiation within E. globulus is likely to originate from interspecific hybridization and ‘chloroplast capture’ from different species in different parts of its range. Superficially, this hybridization is not evident in taxonomic traits; however, large‐scale common garden experiments have revealed a steep cline in quantitative genetic variation that coincides with the haplotype transition in Tasmania. Our cpDNA results provide the strongest evidence to date that hybridization has had a widespread impact on a eucalypt species and indicate that reticulate evolution may be occurring on an unappreciated scale in Eucalyptus.


Plant Methods | 2010

A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus

Carolina Sansaloni; Cesar D. Petroli; Jason Carling; Corey J. Hudson; Dorothy A. Steane; Alexander Andrew Myburg; Dario Grattapaglia; Re Vaillancourt; Andrzej Kilian

BackgroundA number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus.FindingsAfter testing several genome complexity reduction methods we identified the Pst I/Taq I method as the most effective for Eucalyptus and developed 18 genomic libraries from Pst I/Taq I representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56%) were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees.ConclusionsThis operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees and thus provide high genome coverage. This array will also provide a high-throughput platform for population genetics and phylogenetics in Eucalyptus. The transferability of DArT across species and pedigrees is particularly valuable for a large genus such as Eucalyptus and will facilitate the transfer of information between different studies. Furthermore, the DArT marker array will provide a high-resolution link between phenotypes in populations and the Eucalyptus reference genome, which will soon be completed.


American Journal of Botany | 2008

An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae)

Ge McKinnon; Re Vaillancourt; Dorothy A. Steane; Bm Potts

Genus Eucalyptus, with over 700 species, presents a number of systematic difficulties including taxa that hybridize or intergrade across environmental gradients. To date, no DNA marker has been found capable of resolving phylogeny below the sectional level in the major subgenera. Molecular markers are needed to support taxonomic revision, assess the extent of genetic divergence at lower taxonomic levels, and inform conservation efforts. We examined the utility of 930 amplified fragment length polymorphisms (AFLPs) for analyzing relationships among Tasmanian taxa of subgenus Symphyomyrtus section Maidenaria. Phenetic and cladistic analyses resolved species into clusters demonstrating significant genetic partitioning, largely concordant with series defined in the most recent taxonomic revision of Eucalyptus. Some departures from current taxonomy were noted, indicating possible cases of morphological convergence and character reversion. Although the resolution obtained using AFLP was greatly superior to that of single sequence markers, the data demonstrated high homoplasy and incomplete resolution of closely related species. The results of this study and others are consistent with recent speciation and reticulate evolution in Maidenaria. We conclude that a combination of phylogenetic and population genetic approaches using multiple molecular markers offers the best prospects for understanding taxonomic relationships below the sectional level in Eucalyptus.


PLOS ONE | 2012

Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome

Cesar D. Petroli; Carolina Sansaloni; Jason Carling; Dorothy A. Steane; Re Vaillancourt; Alexander Andrew Myburg; Orzenil Bonfim da Silva; Georgios Pappas; Andrzej Kilian; Dario Grattapaglia

Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization.

Collaboration


Dive into the Dorothy A. Steane's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bm Potts

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ge McKinnon

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Margaret Byrne

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Suzanne M. Prober

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Dean Nicolle

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elizabeth McLean

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Th Jones

Cooperative Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge