Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorothy M. Supp is active.

Publication


Featured researches published by Dorothy M. Supp.


Nature | 1997

Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice

Dorothy M. Supp; David P. Witte; S. Steven Potter; Martina Brueckner

The development of characteristic visceral asymmetries along the left–right (LR) axis in an initially bilaterally symmetrical embryo is an essential feature of vertebrate patterning. The allelic mouse mutations inversus viscerum (iv) and legless (lgl) produce LR inversion, or situs inversus, in half of live-born homozygotes. This suggests that the iv gene product drives correct LR determination, and in its absence this process is randomized. These mutations provide tools for studying the development of LR-handed asymmetry and provide mouse models of human lateralization defects. At the molecular level, the normally LR asymmetric expression patterns of nodal and lefty are randomized in iv/iv embryos, suggesting that iv functions early in the genetic hierarchy of LRspecification. Here we report the positional cloning of an axonemal dynein heavy-chain gene, left/right-dynein (lrd), that is mutated in both lgl and iv. lrd is expressed in the node of the embryo at embryonic day 7.5, consistent with its having a role in LR development. Our findings indicate that dynein, a microtubule-based motor, is involved in the determination of LR-handed asymmetry and provide insight into the early molecular mechanisms of this process.


The FASEB Journal | 2002

Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice

Dorothy M. Supp; Kaila Wilson-Landy; Steven T. Boyce

Cultured skin substitutes (CSS) consisting of autologous fibroblasts and keratinocytes combined with biopolymers are an adjunctive treatment for large excised burns. CSS containing two cell types are limited by anatomical deficiencies, including lack of a vascular plexus, leading to slower vascularization after grafting than split‐thickness autograft. To address this limitation, CSS were prepared containing human keratinocytes, fibroblasts, and dermal microvascular endothelial cells (HDMEC) isolated from a single skin sample. After 16 days in culture, control CSS and CSS containing HDMEC (CSS+EC) were grafted to full‐thickness wounds in athymic mice. In CSS+EC in vitro, HDMEC persisted in the dermal substitutes and formed multicellular aggregates. One wk after grafting, HDMEC in CSS+EC organized into multicellular structures, some containing lumens. By 4 wk after grafting, HDMEC were found in linear and circular organizations resembling vascular analogs associated with basement membrane deposition. In some cases, colocalization of HDMEC with mouse perivascular cells was observed. The results demonstrate HDMEC transplantation in a clinically relevant cultured skin model, persistence of HDMEC after grafting, and HDMEC organization into vascular analogs in vitro and in vivo. All cells were derived from the same donor tissue, indicating the feasibility of preparing CSS containing autologous HDMEC for grafting to patients.—Supp, D. M., Wilson‐Landy, K., Boyce, S. T. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J. 16, 797–804 (2002)


The FASEB Journal | 2010

Melanocortin 1 receptor genotype: An important determinant of the damage response of melanocytes to ultraviolet radiation

Ana Luisa Kadekaro; Sancy A. Leachman; Renny Kavanagh; Viki B. Swope; Pamela B. Cassidy; Dorothy M. Supp; Maureen A. Sartor; Sandy Schwemberger; George F. Babcock; Kazumasa Wakamatsu; Shosuke Ito; Amy Koshoffer; Raymond E. Boissy; Prashiela Manga; Richard A. Sturm; Zalfa A. Abdel-Malek

The melanocortin 1 receptor gene is a main determinant of human pigmentation, and a melanoma susceptibility gene, because its variants that are strongly associated with red hair color increase melanoma risk. To test experimentally the association between melanocortin 1 receptor genotype and melanoma susceptibility, we compared the responses of primary human melanocyte cultures naturally expressing different melanocortin 1 receptor variants to α‐melanocortin and ultraviolet radiation. We found that expression of 2 red hair variants abolished the response to α‐melanocortin and its photoprotective effects, evidenced by lack of functional coupling of the receptor, and absence of reduction in ultraviolet radiation‐induced hydrogen peroxide generation or enhancement of repair of DNA photoproducts, respectively. These variants had different heterozygous effects on receptor function. Microarray data confirmed the observed differences in responses of melanocytes with functional vs. non‐functional receptor to α‐melanocortin and ultraviolet radiation, and identified DNA repair and antioxidant genes that are modulated by α‐melanocortin. Our findings highlight the molecular mechanisms by which the melanocortin 1 receptor genotype controls genomic stability of and the mutagenic effect of ultraviolet radiation on human melanocytes.—Kadekaro, A. L., Leachman, S., Kavanagh, R. J., Swope, V., Cassidy, P., Supp, D., Sartor, M., Schwemberger, S., Babcock, G., Wakamatsu, K., Ito, S., Koshoffer, A., Boissy, R. E., Manga, P., Sturm, R. A., Abdel‐Malek, Z. A. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J. 24, 3850–3860 (2010). www.fasebj.org


Journal of Burn Care & Rehabilitation | 2002

Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes.

Dorothy M. Supp; Steven T. Boyce

Cultured skin substitutes (CSS) lack a vascular plexus, leading to slower vascularization after grafting than split-thickness skin autograft. CSS containing keratinocytes genetically modified to overexpress vascular endothelial growth factor (VEGF) were previously shown to exhibit enhanced vascularization up to 2 weeks after grafting to athymic mice. The present study examines whether enhanced vascularization compared with controls persists after stable engraftment is achieved and analyzes VEGF expression, wound contraction, and engraftment. Control and VEGF-modified (VEGF+) CSS were grafted onto full-thickness wounds in athymic mice. VEGF expression was detected in VEGF+ CSS 14 weeks after grafting. Graft contraction was significantly lower in VEGF+ CSS compared with controls, suggesting more stable engraftment and better tissue development. Positive HLA-ABC staining, indicating persistence of human cells, was seen in 86.7% (13/15) of grafted VEGF+ CSS, compared with 58.3% (7/12) of controls. Differences in dermal vascularization between control and VEGF+ grafts were significant 1 week after surgery, but not at later times. However, the distribution of vessels was different, with more vessels in the upper dermis of VEGF+ grafts. These results suggest that VEGF overexpression in genetically modified CSS acts to accelerate early graft vascularization and can contribute to improved healing of full-thickness skin wounds.


Journal of Investigative Dermatology | 2012

Defining MC1R Regulation in Human Melanocytes by Its Agonist α-Melanocortin and Antagonists Agouti Signaling Protein and β-Defensin 3

Viki B. Swope; Joshua Jameson; Kevin L. McFarland; Dorothy M. Supp; William Miller; Dennis W. McGraw; Mira A. Patel; Matthew A. Nix; Glenn L. Millhauser; George F. Babcock; Zalfa A. Abdel-Malek

The melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor, plays an important role in human pigmentation. We investigated the regulation of expression and activity of the MC1R in primary human melanocyte cultures. Human beta defensin 3 (HBD3) acted as an antagonist for MC1R, inhibiting the α-melanocortin (α-MSH)-induced increase in the activities of adenylate cyclase, and tyrosinase, the rate-limiting enzyme for melanogenesis. α-Melanocortin and forskolin, which activate adenylate cyclase, and 12-o-tetradecanoyl phorbol 13-acetate, which activates PKC, increased, while exposure to ultraviolet radiation (UV) reduced, MC1R gene and membrane protein expression. Brief treatment with α-MSH resulted in MC1R desensitization, while continuous treatment up to 3 hours caused a steady rise in cAMP, suggesting receptor recycling. Pretreatment with agouti signaling protein or HBD3 prohibited responsiveness to α-MSH, but not forskolin, suggesting receptor desensitization by these antagonists. Melanocytes from different donors expressed different levels of the G-protein-coupled receptor kinases (GRK) 2, 3, 5, and 6, and β-arrestin 1. Therefore, in addition to MC1R genotype, regulation of MC1R expression and activity is expected to affect human pigmentation and the responses to UV.


Wound Repair and Regeneration | 2001

Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A

Dorothy M. Supp; Sheila M. Bell; Jeffrey R Morgan; Steven T. Boyce

Gene therapy promises the potential for improved treatment of cutaneous wounds. This study evaluated whether genetically modified cultured skin substitutes can act as vehicles for gene therapy in an athymic mouse model of wound healing. Human keratinocytes and fibroblasts were genetically engineered by retroviral transduction to overexpress human platelet‐derived growth factor‐A chain. Three types of skin substitutes were prepared from collagen‐glycosaminoglycan substrates populated with fibroblasts and keratinocytes: HF–/HK–, containing both unmodified fibroblasts and keratinocytes; HF–/HK+, containing unmodified fibroblasts and modified keratinocytes; and HF+/HK–, containing modified fibroblasts and unmodified keratinocytes. Skin substitutes were cultured for two weeks before grafting to full‐thickness wounds on athymic mice. The modified skin substitutes secreted significantly elevated levels of platelet‐derived growth factor throughout the culture period. Expression of retroviral platelet‐derived growth factor‐A mRNA was maintained after grafting to mice, and was detected in all HF–/HK+ grafts and one HF+/HK– graft at two weeks after surgery. Although no differences were seen between control and modified grafts, the results suggest that genetically modified cultured skin substitutes can be a feasible mechanism for cutaneous gene therapy. The cultured skin model used for these studies has advantages over other skin analogs containing only epidermal cells; because it contains both fibroblasts and keratinocytes, it therefore offers greater opportunities for genetic modification and potential modulation of wound healing.


Trends in Cell Biology | 2000

Molecular motors: the driving force behind mammalian left–right development

Dorothy M. Supp; S. Steven Potter; Martina Brueckner

The molecular motors dynein and kinesin are large protein complexes that convert the energy generated by ATP hydrolysis into directional movement along the microtubule cytoskeleton. They are required for a myriad of cellular processes, including mitotic spindle movement, axonal and vesicular transport, and ciliary beating. Recently, it has been shown that, in addition, they have a unique role during embryonic patterning: they are required to orient and establish the left-right axis in early vertebrate development.


Journal of Investigative Dermatology | 2010

Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice.

Jennifer M. Klingenberg; Kevin L. McFarland; Aaron J. Friedman; Steven T. Boyce; Bruce J. Aronow; Dorothy M. Supp

Bioengineered skin substitutes can facilitate wound closure in severely burned patients, but deficiencies limit their outcomes compared with native skin autografts. To identify gene programs associated with their in vivo capabilities and limitations, we extended previous gene expression profile analyses to now compare engineered skin after in vivo grafting with both in vitro maturation and normal human skin. Cultured skin substitutes were grafted on full-thickness wounds in athymic mice, and biopsy samples for microarray analyses were collected at multiple in vitro and in vivo time points. Over 10,000 transcripts exhibited large-scale expression pattern differences during in vitro and in vivo maturation. Using hierarchical clustering, 11 different expression profile clusters were partitioned on the basis of differential sample type and temporal stage-specific activation or repression. Analyses show that the wound environment exerts a massive influence on gene expression in skin substitutes. For example, in vivo-healed skin substitutes gained the expression of many native skin-expressed genes, including those associated with epidermal barrier and multiple categories of cell-cell and cell-basement membrane adhesion. In contrast, immunological, trichogenic, and endothelial gene programs were largely lacking. These analyses suggest important areas for guiding further improvement of engineered skin for both increased homology with native skin and enhanced wound healing.


Wound Repair and Regeneration | 2013

Keloid-derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology

Jennifer M. Hahn; Kathryn Glaser; Kevin L. McFarland; Bruce J. Aronow; Steven T. Boyce; Dorothy M. Supp

Keloids are disfiguring scars that extend beyond the original wound borders and resist treatment. Keloids exhibit excessive extracellular matrix deposition, although the underlying mechanisms remain unclear. To better understand the molecular basis of keloid scarring, here we define the genomic profiles of keloid fibroblasts and keratinocytes. In both cell types, keloid‐derived cells exhibit differential expression of genes encompassing a diverse set of functional categories. Strikingly, keloid keratinocytes exhibited decreased expression of a set of transcription factor, cell adhesion, and intermediate filament genes essential for normal epidermal morphology. Conversely, they exhibit elevated expression of genes associated with wound healing, cellular motility, and vascular development. A substantial number of genes involved in epithelial–mesenchymal transition were also up‐regulated in keloid keratinocytes, implicating this process in keloid pathology. Furthermore, keloid keratinocytes displayed significantly higher migration rates than normal keratinocytes in vitro and reduced expression of desmosomal proteins in vivo. Previous studies suggested that keratinocytes contribute to keloid scarring by regulating extracellular matrix production in fibroblasts. Our current results show fundamental abnormalities in keloid keratinocytes, suggesting they have a profoundly more direct role in keloid scarring than previously appreciated. Therefore, development of novel therapies should target both fibroblast and keratinocyte populations for increased efficacy.


PLOS ONE | 2013

Characterization of Hair Follicle Development in Engineered Skin Substitutes

Penkanok Sriwiriyanont; Kaari A. Lynch; Kevin L. McFarland; Dorothy M. Supp; Steven T. Boyce

Generation of skin appendages in engineered skin substitutes has been limited by lack of trichogenic potency in cultured postnatal cells. To investigate the feasibility and the limitation of hair regeneration, engineered skin substitutes were prepared with chimeric populations of cultured human keratinocytes from neonatal foreskins and cultured murine dermal papilla cells from adult GFP transgenic mice and grafted orthotopically to full-thickness wounds on athymic mice. Non-cultured dissociated neonatal murine-only skin cells, or cultured human-only skin keratinocytes and fibroblasts without dermal papilla cells served as positive and negative controls respectively. In this study, neonatal murine-only skin substitutes formed external hairs and sebaceous glands, chimeric skin substitutes formed pigmented hairs without sebaceous glands, and human-only skin substitutes formed no follicles or glands. Although chimeric hair cannot erupt readily, removal of upper skin layer exposed keratinized hair shafts at the skin surface. Development of incomplete pilosebaceous units in chimeric hair corresponded with upregulation of hair-related genes, LEF1 and WNT10B, and downregulation of a marker of sebaceous glands, Steroyl-CoA desaturase. Transepidermal water loss was normal in all conditions. This study demonstrated that while sebaceous glands may be involved in hair eruption, they are not required for hair development in engineered skin substitutes.

Collaboration


Dive into the Dorothy M. Supp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin L. McFarland

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer M. Hahn

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Steven Potter

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Klingenberg

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Alice N. Neely

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

Andrea K. Smiley

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge