Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorte Bratbo Sørensen is active.

Publication


Featured researches published by Dorte Bratbo Sørensen.


PLOS ONE | 2012

Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse

Katja M. Bendtsen; Lukasz Krych; Dorte Bratbo Sørensen; Wanyong Pang; Dennis S. Nielsen; Knud Josefsen; Lars Hestbjerg Hansen; Søren J. Sørensen; Axel Kornerup Hansen

Stress has profound influence on the gastro-intestinal tract, the immune system and the behavior of the animal. In this study, the correlation between gut microbiota composition determined by Denaturing Grade Gel Electrophoresis (DGGE) and tag-encoded 16S rRNA gene amplicon pyrosequencing (454/FLX) and behavior in the Tripletest (Elevated Plus Maze, Light/Dark Box, and Open Field combined), the Tail Suspension Test, and Burrowing in 28 female BALB/c mice exposed to two weeks of grid floor induced stress was investigated. Cytokine and glucose levels were measured at baseline, during and after exposure to grid floor. Stressing the mice clearly changed the cecal microbiota as determined by both DGGE and pyrosequencing. Odoribacter, Alistipes and an unclassified genus from the Coriobacteriaceae family increased significantly in the grid floor housed mice. Compared to baseline, the mice exposed to grid floor housing changed the amount of time spent in the Elevated Plus Maze, in the Light/Dark Box, and burrowing behavior. The grid floor housed mice had significantly longer immobility duration in the Tail Suspension Test and increased their number of immobility episodes from baseline. Significant correlations were found between GM composition and IL-1α, IFN-γ, closed arm entries of Elevated Plus Maze, total time in Elevated Plus Maze, time spent in Light/Dark Box, and time spent in the inner zone of the Open Field as well as total time in the Open Field. Significant correlations were found to the levels of Firmicutes, e.g. various species of Ruminococccaceae and Lachnospiraceae. No significant difference was found for the evaluated cytokines, except an overall decrease in levels from baseline to end. A significant lower level of blood glucose was found in the grid floor housed mice, whereas the HbA1c level was significantly higher. It is concluded that grid floor housing changes the GM composition, which seems to influence certain anxiety-related parameters.


PLOS ONE | 2014

A Possible Link between Food and Mood: Dietary Impact on Gut Microbiota and Behavior in BALB/c Mice

Bettina Pyndt Jørgensen; Julie Torpe Hansen; Lukasz Krych; Christian P. Larsen; Anders Bue Klein; Dennis S. Nielsen; Knud Josefsen; Axel Kornerup Hansen; Dorte Bratbo Sørensen

Major depressive disorder is a debilitating disease in the Western World. A western diet high in saturated fat and refined sugar seems to play an important part in disease development. Therefore, this study is aimed at investigating whether saturated fat or sucrose predisposes mice to develop behavioral symptoms which can be interpreted as depression-like, and the possible influence of the gut microbiota (GM) in this. Fourty-two mice were randomly assigned to one of three experimental diets, a high-fat, a high-sucrose or a control diet for thirteen weeks. Mice on high-fat diet gained more weight (p = 0.00009), displayed significantly less burrowing behavior than the control mice (p = 0.034), and showed decreased memory in the Morris water maze test compared to mice on high-sucrose diet (p = 0.031). Mice on high-sucrose diet burrowed less goal-oriented, showed greater latency to first bout of immobility in the forced swim test when compared to control mice (p = 0.039) and high-fat fed mice (p = 0.013), and displayed less anxiety than mice on high-fat diet in the triple test (p = 0.009). Behavioral changes were accompanied by a significant change in GM composition of mice fed a high-fat diet, while no difference between diet groups was observed for sucrose preferences, LPS, cholesterol, HbA1c, BDNF and the cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12(p70), IL-17 and TNF-α. A series of correlations was found between GM, behavior, BDNF and inflammatory mediators. In conclusion, the study shows that dietary fat and sucrose affect behavior, sometimes in opposite directions, and suggests a possible association between GM and behavior.


Laboratory Animals | 2013

Fasting of mice: a review.

Tl Jensen; Mk Kiersgaard; Dorte Bratbo Sørensen; Lars Friis Mikkelsen

Fasting of mice is a common procedure performed in association with many different types of experiments mainly in order to reduce variability in investigatory parameters or to facilitate surgical procedures. However, the effects of fasting not directly related to the investigatory parameters are often ignored. The aim of this review is to present and summarize knowledge about the effects of fasting of mice to facilitate optimization of the fasting procedure for any given study and thereby maximize the scientific outcome and minimize the discomfort for the mice and hence ensure high animal welfare. The results are presented from a number of experimental studies, providing evidence for fasting-induced changes in hormone balance, body weight, metabolism, hepatic enzymes, cardiovascular parameters, body temperature and toxicological responses. A description of relevant normal behaviour and standard physiological parameters is given, concluding that mice are primarily nocturnal and consume two-thirds of their total food intake during the night. It is argued that overnight fasting of mice is not comparable with overnight fasting of humans because the mouse has a nocturnal circadian rhythm and a higher metabolic rate. It is suggested that because many physiological parameters are regulated by circadian rhythms, fasting initiated at different points in the circadian rhythm has different impacts and produces different results.


Physiology & Behavior | 2015

Investigating the long-term effect of subchronic phencyclidine-treatment on novel object recognition and the association between the gut microbiota and behavior in the animal model of schizophrenia

B. Pyndt Jørgensen; Lukasz Krych; Tina Brønnum Pedersen; Niels Plath; J.P. Redrobe; Axel Kornerup Hansen; Dennis S. Nielsen; C.S. Pedersen; Christian P. Larsen; Dorte Bratbo Sørensen

Subchronic phencyclidine (subPCP) treatment induces schizophrenic-like behavior in rodents, including cognitive deficits and increased locomotor sensitivity towards acute administration of PCP. Evidence is accumulating that the gut microbiota (GM) influences behavior through modulation of the microbiota-gut-brain axis, and hence, part of the variation within this animal model may derive from variation in the GM. The aims of this study was to investigate first, the duration of subPCP-induced cognitive impairment in the novel object recognition test, and second, the possible effect of subchronic PCP-treatment on the GM, and the association between the GM and the behavioral parameters. The association was further investigated by antibiotic reduction of the GM. Male Lister Hooded rats were dosed twice daily i.p. with either 5mg/kg PCP or sterile isotonic saline for seven days followed by a seven-day washout period. Rats were tested in the novel object recognition and the locomotor activity assays immediately after, three weeks after, or six weeks after washout, and the fecal GM was analyzed by high throughput sequencing. Antibiotic- and control-treated rats were tested in the same manner following washout. In conclusion, subPCP-treatment impaired novel object recognition up to three weeks after washout, whereas locomotor sensitivity was increased for at least six weeks after washout. Differences in the core gut microbiome immediately after washout suggested subPCP treatment to alter the GM. GM profiles correlated to memory performance. Administration of ampicillin abolished the subPCP-induced memory deficit. It thus seems reasonable to speculate that the GM influences memory performance, contributing to variation within the model.


Behavioural Brain Research | 2014

PCP-induced deficits in murine nest building activity: Employment of an ethological rodent behavior to mimic negative-like symptoms of schizophrenia

Christian Spang Pedersen; Dorte Bratbo Sørensen; Anna I. Parachikova; Niels Plath

Schizophrenia is a severe psychiatric disorder characterized by three symptom domains, positive (hallucinations, obsession), negative (social withdrawal, apathy, self-neglect) and cognitive (impairment in attention, memory and executive function). Whereas current medication ameliorates positive symptomatology, negative symptoms as well as cognitive dysfunctions remain untreated. The development of improved therapies for negative symptoms has proven particularly difficult, in part due to the inability of mimicking these in rodents. Here, we address the predictive validity of combining an ethologically well preserved behavior in rodents, namely nest building activity, with an established animal model of schizophrenia, the sub-chronic PCP model, for negative symptoms. Decline in rodent nesting activity has been suggested to mirror domains of negative symptoms of schizophrenia, including social withdrawal, anhedonia and self-neglect, whereas repeated treatment with the NMDAR antagonist PCP induces and exacerbates schizophrenia-like symptoms in rodents and human subjects. Using a back-translational approach of pharmacological validation, we tested the effects of two agents targeting the nicotinic α7 receptor (EVP-6124 and TC-5619) that were reported to exert some beneficial effect on negative symptoms in schizophrenic patients. Sub-chronic PCP treatment resulted in a significant nest building deficit in mice and treatment with EVP-6124 and TC-5619 reversed this PCP-induced deficit. In contrast, the atypical antipsychotic drug risperidone remained ineffective in this assay. In addition, EVP-6124, TC-5619 and risperidone were tested in the Social Interaction Test (SIT), an assay suggested to address negative-like symptoms. Results obtained in SIT were comparable to results in the nest building test (NEST). Based on these findings, we propose nest building in combination with the sub-chronic PCP model as a novel approach to assess negative-like symptoms of schizophrenia in rodents.


Acta Neuropsychiatrica | 2015

Dietary magnesium deficiency alters gut microbiota and leads to depressive-like behaviour.

Gudrun Winther; Betina M Pyndt Jørgensen; Denis Sandris Nielsen; Pernille Kihl; Sten Lund; Dorte Bratbo Sørensen; Gregers Wegener

Objective Gut microbiota (GM) has previously been associated with alterations in rodent behaviour, and since the GM is affected by the diet, the composition of the diet may be an important factor contributing to behavioural changes. Interestingly, a magnesium restricted diet has been shown to induce anxiety and depressive-like behaviour in humans and rodents, and it could be suggested that magnesium deficiency may mediate the effects through an altered GM. Methods The present study therefore fed C57BL/6 mice with a standard diet or a magnesium deficient diet (MgD) for 6 weeks, followed by behavioural testing in the forced swim test (FST) to evaluate depressive-like behaviour. An intraperitoneal glucose tolerance test (GTT) was performed 2 day after the FST to assess metabolic alterations. Neuroinflammatory markers were analysed from hippocampus. GM composition was analysed and correlated to the behaviour and hippocampal markers. Results It was found that mice exposed to MgD for 6 weeks were more immobile than control mice in the FST, suggesting an increased depressive-like behaviour. No significant difference was detected in the GTT. GM composition correlated positively with the behaviour of undisturbed C57BL/6 mice, feeding MgD diet altered the microbial composition. The altered GM correlated positively to the hippocampal interleukin-6. Conclusion In conclusion, we hypothesise that imbalances of the microbiota–gut–brain axis induced by consuming a MgD diet, contributes to the development of depressive-like behaviour.


Animal Behaviour | 2004

Using the cross point of demand functions to assess animal priorities

Dorte Bratbo Sørensen; Jan Ladewig; Annette Kjær Ersbøll; Lindsay R. Matthews

We developed a method to assess the substitutability of two reinforcers by using the divergence of the cross point of two demand functions. Two kinds of water were used as reinforcers, namely distilled water and quinine water. We tested 16 rats, Rattus norvegicus, from two strains in a closed economy. A single demand function for each kind of water was established. Then, two reinforcers were presented on concurrent fixed-ratio schedules. Finally, a control condition with distilled water for both responses was run. Demand functions were generated on scales with fixed-ratio values on the X axis and number of reinforcers obtained on the Y axis. The cross point of the functions differed significantly between the two strains of rats in both conditions within each condition. Furthermore, there was a significant difference within strains between the conditions. On evaluating the single demand functions, we found a significant difference between the slopes of the two demand functions, but no strain differences in demand. In addition, the results revealed a disagreement between demand assessed by using the slope of the single demand function and the results using the double demand function, with the results of the double demand function being in accordance with simple choice behaviour of the rats in their home environment. Using the cross point of two demand functions provides a measure of substitutability and, furthermore, the method appears to be a more sensitive measure of animal priorities than single demand functions.


Laboratory Animals | 2014

Manual versus automated blood sampling: impact of repeated blood sampling on stress parameters and behavior in male NMRI mice.

Anne Charlotte Teilmann; Otto Kalliokoski; Dorte Bratbo Sørensen; Jann Hau; Klas S.P. Abelson

Facial vein (cheek blood) and caudal vein (tail blood) phlebotomy are two commonly used techniques for obtaining blood samples from laboratory mice, while automated blood sampling through a permanent catheter is a relatively new technique in mice. The present study compared physiological parameters, glucocorticoid dynamics as well as the behavior of mice sampled repeatedly for 24 h by cheek blood, tail blood or automated blood sampling from the carotid artery. Mice subjected to cheek blood sampling lost significantly more body weight, had elevated levels of plasma corticosterone, excreted more fecal corticosterone metabolites, and expressed more anxious behavior than did the mice of the other groups. Plasma corticosterone levels of mice subjected to tail blood sampling were also elevated, although less significantly. Mice subjected to automated blood sampling were less affected with regard to the parameters measured, and expressed less anxious behavior. We conclude that repeated blood sampling by automated blood sampling and from the tail vein is less stressful than cheek blood sampling. The choice between automated blood sampling and tail blood sampling should be based on the study requirements, the resources of the laboratory and skills of the staff.


PLOS ONE | 2011

Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice

Andreas F. Kolb; Reinhard C. Huber; Simon G. Lillico; Ailsa Carlisle; Claire Robinson; Claire Neil; Linda Petrie; Dorte Bratbo Sørensen; I. Anna S. Olsson; C. Bruce A. Whitelaw

The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.


Laboratory Animals | 2007

The impact of tail tip amputation and ink tattoo on C57BL/6JBomTac mice

Dorte Bratbo Sørensen; C. Stub; Henrik Elvang Jensen; Merel Ritskes-Hoitinga; Peter Hjorth; Jan Lund Ottesen; Axel Kornerup Hansen

Genetic material for polymerase chain reaction (PCR) and Southern blot analysis on transgenic mice is normally obtained by tail biopsy. Additionally, it may be necessary to tattoo the mice, as it is essential to have a good and permanent identification. The aim of this study was to evaluate the effects of amputating the tip of the tail to obtain a biopsy for genetic analysis and of ink tattooing on welfare in C57BL/6J mice, a strain often used as genetic background for transgenes. The behaviour of the animals, fluctuating asymmetry (FA, a measure of developmental instability) and the level of restitution in the remaining part of the tail were evaluated and used for an assessment of the impact of these procedures on the welfare of the animals. One group of mice was marked by tail tattooing at various ages. Another group of mice were tail amputated at 12 or 20 days of age. Body weight and FA were followed, and at the end of the experiment, the level of fear/anxiety was assessed using a light–dark box. In the group of tail-amputated animals observation of climbing behaviour and a beam walking test for balance was performed. Seven weeks after tail amputation, the animals were euthanized. The remaining part of the tail was evaluated histopathologically. Body weight, behaviour in the light–dark box and balance test results were not influenced by tail amputation or tattooing. FA was only transiently increased by tattooing. Climbing behaviour was reduced just after tail amputation at 20 days of age. No signs of neuromas were found in the amputated tails, but seven weeks after amputation a significant number of mice did not have fully regenerated glandular tissue and hair follicles in the tail. It is concluded that both tail amputation and tail tattooing seem to have minor short-term negative effects on welfare and that the tissues on the tail probably do not regenerate fully after amputation.

Collaboration


Dive into the Dorte Bratbo Sørensen's collaboration.

Top Co-Authors

Avatar

Axel Kornerup Hansen

University of Copenhagen Faculty of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Peter Sandøe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsten Dahl

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge