Dorte Janussen
American Museum of Natural History
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorte Janussen.
Nature | 2007
A. Brandt; Andrew J. Gooday; Simone N. Brandão; Saskia Brix; Wiebke Brökeland; Tomas Cedhagen; Madhumita Choudhury; Nils Cornelius; Bruno Danis; Ilse De Mesel; Robert J. Diaz; David Gillan; Brigitte Ebbe; John A. Howe; Dorte Janussen; Stefanie Kaiser; Katrin Linse; Marina V. Malyutina; Jan Pawlowski; Michael J. Raupach; Ann Vanreusel
Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748–6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.
Systematic Biology | 2008
Martin Dohrmann; Dorte Janussen; Joachim Reitner; Allen Gilbert Collins; Gert Wörheide
Reconstructing the phylogeny of sponges (Porifera) is one of the remaining challenges to resolve the metazoan Tree of Life and is a prerequisite for understanding early animal evolution. Molecular phylogenetic analyses for two of the three extant classes of the phylum, Demospongiae and Calcarea, are largely incongruent with traditional classifications, most likely because of a paucity of informative morphological characters and high levels of homoplasy. For the third class, Hexactinellida (glass sponges)--predominantly deep-sea inhabitants with unusual morphology and biology--we present the first molecular phylogeny, along with a cladistic analysis of morphological characters. We collected 18S, 28S, and mitochondrial 16S ribosomal DNA sequences of 34 glass sponge species from 27 genera, 9 families, and 3 orders and conducted partitioned Bayesian analyses using RNA secondary structure-specific substitution models (paired-sites models) for stem regions. Bayes factor comparisons of different paired-sites models against each other and conventional (independent-sites) models revealed a significantly better fit of the former but, contrary to previous predictions, the least parameter-rich of the tested paired-sites models provided the best fit to our data. In contrast to Demospongiae and Calcarea, our rDNA phylogeny agrees well with the traditional classification and a previously proposed phylogenetic system, which we ascribe to a more informative morphology in Hexactinellida. We find high support for a close relationship of glass sponges and Demospongiae sensu stricto, though the latter may be paraphyletic with respect to Hexactinellida. Homoscleromorpha appears to be the sister group of Calcarea. Contrary to most previous findings from rDNA, we recover Porifera as monophyletic, although support for this clade is low under paired-sites models.
PLOS ONE | 2012
Rachel Downey; Huw J. Griffiths; Katrin Linse; Dorte Janussen
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.
Proceedings of the Royal Society of London B: Biological Sciences | 2013
Hermann Ehrlich; Oksana V. Kaluzhnaya; Mikhail V. Tsurkan; Alexander V. Ereskovsky; Konstantin R. Tabachnick; Micha Ilan; Allison L. Stelling; Roberta Galli; O. V. Petrova; Serguei V. Nekipelov; Victor N. Sivkov; D. V. Vyalikh; René Born; Thomas Behm; Andre Ehrlich; Lubov I. Chernogor; S. I. Belikov; Dorte Janussen; Vasilii V. Bazhenov; Gert Wörheide
A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges’ holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan–Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.
Marine Drugs | 2013
Tom Turk; Jerneja Ambrožič Avguštin; Urška Batista; Gašper Strugar; Rok Kosmina; Sandra Čivović; Dorte Janussen; Silke Kauferstein; Dietrich Mebs; Kristina Sepčić
We report on the screening of ethanolic extracts from 33 deep-sea Antarctic marine sponges for different biological activities. We monitored hemolysis, inhibition of acetylcholinesterase, cytotoxicity towards normal and transformed cells and growth inhibition of laboratory, commensal and clinically and ecologically relevant bacteria. The most prominent activities were associated with the extracts from sponges belonging to the genus Latrunculia, which show all of these activities. While most of these activities are associated to already known secondary metabolites, the extremely strong acetylcholinesterase inhibitory potential appears to be related to a compound unknown to date. Extracts from Tetilla leptoderma, Bathydorus cf. spinosus, Xestospongia sp., Rossella sp., Rossella cf. racovitzae and Halichondria osculum were hemolytic, with the last two also showing moderate cytotoxic potential. The antibacterial tests showed significantly greater activities of the extracts of these Antarctic sponges towards ecologically relevant bacteria from sea water and from Arctic ice. This indicates their ecological relevance for inhibition of bacterial microfouling.
Zoologica Scripta | 2013
Sergio Vargas; Dirk Erpenbeck; Christian Göcke; Kathryn A. Hall; John N. A. Hooper; Dorte Janussen; Gert Wörheide
Vargas, S., Erpenbeck, D., Göcke, C., Hall, K. A., Hooper, J. N. A., Janussen, D. & Wörheide, G. (2012) Molecular phylogeny of Abyssocladia (Cladorhizidae: Poecilosclerida) and Phelloderma (Phellodermidae: Poecilosclerida) suggests a diversification of chelae microscleres in cladorhizid sponges. —Zoologica Scripta, 42, 106–116.
Polar Biology | 2011
Yanjuan Xin; Manmadhan Kanagasabhapathy; Dorte Janussen; Song Xue; Wei Zhang
Gram-positive bacteria, specifically actinobacteria and members of the order Bacillales, are well-known producers of important secondary metabolites. Little is known about the diversity of Gram-positive bacteria associated with Antarctic deep-sea sponges. In this study, cultivation-based approaches were applied to investigate the Gram-positive bacteria associated with the Antarctic sponges Rossella nuda, Rossella racovitzae (Porifera: Hexactinellida), and Myxilla mollis, Homaxinella balfourensis, Radiella antarctica (Porifera: Demospongiae). In total, 46 Gram-positive strains were cultured. Phylogenetic analysis revealed that 24 strains were affiliated with the Actinobacteria, including six genera Streptomyces, Nocardiopsis, Pseudonocardia, Dietzia, Brachybacterium, and Brevibacterium. The other 22 strains were affiliated with the Firmicutes, and among them two (V17-1 and V179-1) only shared 92–95% 16S rRNA gene sequence identity with the nearest type strain. To our knowledge, this is the first report on the isolation of strains belonging to genera Dietzia and Brevibacterium from Antarctic sponges. All of the 46 strains were PCR screened for genes encoding polyketide synthases (PKS), and a selection of 36 isolates were used in subsequent bioassay analyses. Eighty-eight percentage of the isolates that possess a PKS gene were active against at least one test organism. The study confirms the existence of diverse bacteria in Antarctic sponges and their potential for producing active compounds.
Paleobiology | 2013
Martin Dohrmann; Sergio Vargas; Dorte Janussen; Allen Gilbert Collins; Gert Wörheide
Abstract Reconciliation of paleontological and molecular phylogenetic evidence holds great promise for a better understanding of the temporal succession of cladogenesis and character evolution, especially for taxa with a fragmentary fossil record and uncertain classification. In zoology, studies of this kind have largely been restricted to Bilateria. Hexactinellids (glass sponges) readily lend themselves to test such an approach for early-branching (non-bilaterian) animals: they have a long and rich fossil record, but for certain taxa paleontological evidence is still scarce or ambiguous. Furthermore, there is a lack of consensus for taxonomic interpretations, and discrepancies exist between neontological and paleontological classification systems. Using conservative fossil calibration constraints and the largest molecular phylogenetic data set assembled for this group, we infer divergence times of crown-group Hexactinellida in a Bayesian relaxed molecular clock framework. With some notable exceptions, our results are largely congruent with interpretations of the hexactinellid fossil record, but also indicate long periods of undocumented evolution for several groups. This study illustrates the potential of an integrated molecular/paleobiological approach to reconstructing the evolution of challenging groups of organisms.
Polar Biology | 2016
Daniel Kersken; Barbara Feldmeyer; Dorte Janussen
Sponge communities on the Antarctic continental shelf currently represent one of the most extensive sponge grounds in the world, and all sponge classes are known to occur in the Southern Ocean. Main objectives of this study conducted at the tip of the Antarctic Peninsula were (1) to identify all sampled sponges and (2) to investigate whether the species composition and species richness of Southern Ocean sponge communities in the area of the Antarctic Peninsula are significantly influenced by environmental variables. The studied material originated from 25 AGT catches and was sampled during the expedition ANT-XXIX/3 of RV Polarstern. Samples were collected in three large-scale areas in the vicinity of the Antarctic Peninsula: Bransfield Strait, Drake Passage and Weddell Sea. The following six environmental variables were measured from bottom water samples (except for sea-ice cover): depth (m), light transmission (%), oxygen (µmol/kg), salinity, sea-ice cover (%) and temperature (°C). Two hundred and sixty-three sponge samples were analyzed, and 81 species of 33 genera from all Porifera classes (Calcarea, Demospongiae, Hexactinellida and Homoscleromorpha) were identified. Total numbers of sponge species per sample station ranged from 1 to 29. A detrended correspondence analysis and a backward-stepwise model selection were performed to check whether species composition and richness were significantly influenced by environmental variables. The analyses revealed that none of the measured environmental variables significantly influenced species composition but that species richness was significantly influenced by (1) temperature and (2) the combination of temperature and depth. Results of this study are of crucial importance for development, performance and assessment of future protection strategies in case of ongoing climatic changes at the Antarctic Peninsula.
Scientific Reports | 2015
Lixia Li; Hongzhen Feng; Dorte Janussen; Joachim Reitner
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.