Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dörthe Schaue is active.

Publication


Featured researches published by Dörthe Schaue.


International Journal of Radiation Oncology Biology Physics | 2012

Maximizing Tumor Immunity With Fractionated Radiation

Dörthe Schaue; Josephine A. Ratikan; Keisuke S. Iwamoto; William H. McBride

PURPOSE Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. METHODS AND MATERIALS Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4(+)CD25(hi)Foxp3(+) T cells. RESULTS After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. CONCLUSIONS Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.


Radiation Research | 2012

Cytokines in Radiobiological Responses: A Review

Dörthe Schaue; Evelyn L. Kachikwu; William H. McBride

Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). “Self” molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, “driver” cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly affect intrinsic cellular radiosensitivity, the incidence and type of radiation tissue complications, bystander effects, genomic instability and cancer. Minor and not so minor, polymorphisms in cytokine genes give considerable diversity within populations and are relevant to causation of disease. Therapeutic intervention is made difficult by such complexity; but the potential prize is great.


International Journal of Radiation Oncology Biology Physics | 2011

Radiation Enhances Regulatory T Cell Representation

Evelyn L. Kachikwu; Keisuke S. Iwamoto; Yu-Pei Liao; J DeMarco; Nzhde Agazaryan; James S. Economou; William H. McBride; Dörthe Schaue

PURPOSE Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. METHODS AND MATERIALS Treg cells were identified as a CD4(+)CD25(hi)Foxp3(+) lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. RESULTS CD4(+)CD25(hi)Foxp3(+) Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. CONCLUSIONS We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.


Clinical & Developmental Immunology | 2011

The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

Steven E. Finkelstein; Robert D. Timmerman; William H. McBride; Dörthe Schaue; Sarah E. Hoffe; Constantine A. Mantz; George D. Wilson

Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses.


Clinical Cancer Research | 2008

T-Cell Responses to Survivin in Cancer Patients Undergoing Radiation Therapy

Dörthe Schaue; Begonya Comin-Anduix; Antoni Ribas; Li Zhang; Lee Goodglick; James Sayre; Annelies Debucquoy; Karin Haustermans; William H. McBride

Purpose: The goal of this study was to determine if radiation therapy (RT) of human cancer enhances or diminishes tumor-specific T-cell reactivity. This is important if immunotherapy is to be harnessed to improve the outcome of cancer radiotherapy. Experimental Design: Lymphocytes were isolated from colorectal cancer (CRC) patients before, during, and after presurgical chemoradiotherapy. Similar samples were taken from prostate cancer patients receiving standard RT. The level of CD8+ T cells capable of binding tetramers for the tumor-associated antigen survivin, which is overexpressed in both cancer types, was enumerated in HLA-A*0201 patient samples. CD4+, CD25high, Foxp3+ cells were also enumerated to evaluate therapy-induced changes in Tregulatory cells. For CRC patients, most of whom were enrolled in a clinical trial, pathologic response data were available, as well as biopsy and resection specimens, which were stained for cytoplasmic and intranuclear survivin. Results: Survivin-specific CD8+ T lymphocytes were detected in the peripheral blood of CRC and prostate cancer patients and increased after therapy in some, but not all, patients. Increases were more common in CRC patients whose tumor was downstaged after chemoradiotherapy. Biopsy specimens from this cohort generally had higher nuclear to cytoplasmic survivin expression. Tregulatory cells generally increased in the circulation following therapy but only in CRC patients. Conclusion: This study indicates that RT may increase the likelihood of some cancer patients responding to immunotherapy and lays a basis for future investigations aimed at combining radiation and immunotherapy.


Radiation Research | 2010

Links between Innate Immunity and Normal Tissue Radiobiology

Dörthe Schaue; William H. McBride

Abstract The body senses “danger” from “damaged self” molecules through members of the same receptor superfamily it uses for microbial “non-self”, triggering canonical signaling pathways that lead to the generation of acute inflammatory responses. For this reason, the biology of normal tissue responses to moderate and clinically relevant doses of radiation is inextricably connected to innate immunity. The complex sequence of inflammatory events that ensues causes further cell and tissue damage to eliminate potential invaders but also leads to cytoprotective responses that limit the spread of damage and to wound healing through tissue regeneration or replacement. These sequential processes are orchestrated through multiple feedback control mechanisms involving cyclical production of free radicals and cytokines that are common to both radiation and immune signaling. This requires a concerted effort by resident tissue and inflammatory cell types, with macrophages apparently leading the way. The initial response to moderate doses of radiation therefore feeds into a pro-inflammatory paradigm whose eventual outcome is critically dependent upon the properties of the immune cells that are involved in tissue damage, regeneration and repair and that are in part under genetic influence. Importantly, these canonical pathways provide targets for interventions aimed at modifying normal tissue radiation responses. In this review, we examine areas of intersection between innate immunity and normal tissue radiobiology.


International Journal of Radiation Biology | 2005

Radiation treatment of acute inflammation in mice.

Dörthe Schaue; Jutta Jahns; Guido Hildebrandt; Klaus-Rüdiger Trott

Purpose: Low-dose radiotherapy (RT) has often been used effectively for the treatment of a variety of benign diseases, particularly those with acute inflammatory features. Here we report findings on radiation treatment of acute inflammation using a murine carrageenin air pouch model. Materials and methods: Air pouches raised on the dorsal surface of mice were injected with λ carrageenin and were irradiated 6 h later with doses ranging from 0 – 5 Gy. Treatment success was evaluated at various times thereafter by volume of exudate and number of inflammatory cells, and levels of inflammation-related cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and transforming growth factor beta-1 (TGFβ-1), and expression of inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX-2) and inducible heat shock protein 70 (HSP70) as determined by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. Results: Crude inflammatory parameters such as the amount of exudates and number of inflammatory cells remained largely unaffected by radiation or were even a slightly and transiently increased. However, the expression of iNOS was attenuated by radiation concomitant with an increase in the levels of HO-1 and HSP70. Cytokine levels varied with the radiation dose and the time point. Conclusions: Ionizing radiation, even at low doses, functionally modulates inflammatory cells. Our findings indicate possible mechanisms as to how low-dose radiation may exert anti-inflammatory effects and provide the first evidence that heat shock proteins may be involved in this response.


Seminars in Radiation Oncology | 2015

Radiation and Inflammation

Dörthe Schaue; Ewa D. Micewicz; Josephine A. Ratikan; Michael W. Xie; Genhong Cheng; William H. McBride

The immune system has the power to modulate the expression of radiation-induced normal and tumor tissue damage. On the one hand, it can contribute to cancer cure, and on the other hand, it can influence acute and late radiation side effects, which in many ways resemble acute and chronic inflammatory disease states. The way radiation-induced inflammation feeds into adaptive antigen-specific immune responses adds another dimension to the tumor-host cross talk during radiation therapy and to possible radiation-driven autoimmune responses. Understanding how radiation affects inflammation and immunity is therefore critical if we are to effectively manipulate these forces for benefit in radiation oncology treatments.


Nature Reviews Clinical Oncology | 2015

Opportunities and challenges of radiotherapy for treating cancer

Dörthe Schaue; William H. McBride

The past 20 years have seen dramatic changes in the delivery of radiation therapy, but the impact of radiobiology on the clinic has been far less substantial. A major consideration in the use of radiotherapy has been on how best to exploit differences between the tumour and host tissue characteristics, which in the past has been achieved empirically by radiation-dose fractionation. New advances are uncovering some of the mechanistic processes that underlie this success story. In this Review, we focus on how these processes might be targeted to improve the outcome of radiotherapy at the individual patient level. This approach would seem a more productive avenue of treatment than simply trying to increase the radiation dose delivered to the tumour.


Frontiers in Bioscience | 2007

Modification of the tumor microenvironment to enhance immunity.

Yu-Pei Liao; Dörthe Schaue; William H. McBride

The growth and spread of cancer depends as much on the host response to tumor as on the biological characteristics of the tumor itself. This interaction is at its most intimate and dynamic within the tumor microenvironment. It is here that the battle is fought that leads to mutual evolution of tumor and host cell phenotypes. Contributing to this evolutionary process are physiological changes distinctive for the tumor microenvironment, such as hypoxia, low nutrient levels, low extracellular pH, and high interstitial fluid pressure. These largely result from the chaotic intratumoral vasculature but are impacted by the nature of the tumor and the inflammatory and wound healing responses that are generated. Numerous infiltrating immune cells, including macrophages, lymphocytes, natural killer cells and dendritic cells infiltrate the tumor, contributing to high levels of growth factors, hormones, and cytokines. We suggest that the integrated interplay between host and tumor factors results in distinct phenotypes that determine the response to therapy as well as tumor behavior. Targeting the tumor microenvironment to awaken or reawaken immune cells, or to redirect it from a pro-tumor to an anti-tumor state, will require understanding of this phenotype. Current conventional therapies target tumors not tumor cells and clearly affect the host infiltrate and the physiological characteristics of the tumor microenvironment. This may an advantage that has yet to be effectively exploited due to lack of knowledge of existing phenotypes resulting from the tumor-host interactions. The same lack of knowledge impacts outcomes of clinical immunotherapy (IT) trials that have so far not broken through the ceiling of 10% success rate that seems to exist even in melanoma. It seems obvious that more could be achieved by combining therapies that tackle malignancies from multiple angles, with the tumor microenvironment conditioned to support a powerful effector arm generated by IT. The challenge is how to design combination therapies that modify the tumor microenvironment so as to promote immunity and better combat both local and systemic disease.

Collaboration


Dive into the Dörthe Schaue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Sayre

University of California

View shared research outputs
Top Co-Authors

Avatar

Percy Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Sherven Sharma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Elashoff

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge