Doru Petrisor
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Doru Petrisor.
Minimally Invasive Therapy & Allied Technologies | 2007
Dan Stoianovici; Danny Y. Song; Doru Petrisor; Daniel Ursu; Dumitru Mazilu; Michael Mutener; Michael Schär; Alexandru Patriciu
The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 4, designed for the robot reported here with uncompromised MRI compatibility, high‐precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi‐imager compatible, being able to operate with the imager of choice or cross‐imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light‐based encoding is used for feedback, so that all electric components are distally located outside the imagers room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in‐scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low‐dose radiation seed brachytherapy. This paper gives an introduction to the challenges of MRI robot compatibility and presents the solutions adopted in making the MrBot. Its multi‐imager compatibility and other preclinical tests are included. The robot shows the technical feasibility of MRI‐guided prostate interventions, yet its clinical utility is still to be determined.
IEEE-ASME Transactions on Mechatronics | 2007
Dan Stoianovici; Alexandru Patriciu; Doru Petrisor; Dumitru Mazilu; Louis R. Kavoussi
This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications
IEEE Transactions on Biomedical Engineering | 2007
Alexandru Patriciu; Doru Petrisor; Michael Muntener; Dumitru Mazilu; Michael Schär; Dan Stoianovici
The paper presents a robotic method of performing low dose rate prostate brachytherapy under magnetic resonance imaging (MRI) guidance. The design and operation of a fully automated MR compatible seed injector is presented. This is used with the MrBot robot for transperineal percutaneous prostate access. A new image-registration marker and algorithms are also presented. The system is integrated and tested with a 3T MRI scanner. Tests compare three different registration methods, assess the precision of performing automated seed deployment, and use the seeds to assess the accuracy of needle targeting under image guidance. Under the ideal conditions of the in vitro experiments, results show outstanding image-guided needle and seed placement accuracy.
Radiology | 2008
Michael Muntener; Alexandru Patriciu; Doru Petrisor; Michael Schär; Daniel Ursu; Danny Y. Song; Dan Stoianovici
The study was approved by the animal care and use committee. The purpose of the study was to prospectively establish proof of principle in vivo in canines for a magnetic resonance (MR) imaging-compatible robotic system designed for image-guided prostatic needle intervention. The entire robot is built with nonmagnetic and dielectric materials and in its current configuration is designed to perform fully automated brachytherapy seed placement within a closed MR imager. With a 3.0-T imager, in four dogs the median error for MR imaging-guided needle positioning and seed positioning was 2.02 mm (range, 0.86-3.18 mm) and 2.50 mm (range, 1.45-10.54 mm), respectively. The robotic system is capable of accurate MR imaging-guided prostatic needle intervention within a standard MR imager in vivo in a canine model.
IEEE-ASME Transactions on Mechatronics | 2014
Dan Stoianovici; Chunwoo Kim; Govindarajan Srimathveeravalli; Peter Sebrecht; Doru Petrisor; Jonathan A. Coleman; Stephen B. Solomon; Hedvig Hricak
This paper reports the development of an MRI-Safe robot for direct (interventional) MRI-guided endorectal prostate biopsy. The robot is constructed of nonmagnetic and electrically nonconductive materials, and is electricity free, using pneumatic actuation and optical sensors. Targeting biopsy lesions of MRI abnormality presents substantial clinical potential for the management of prostate cancer. This paper describes MRI-Safe requirements and presents the kinematic architecture, design, and construction of the robot, and a comprehensive set of preclinical tests for MRI compatibility and needle targeting accuracy. The robot has a compact and simple three degree-of-freedom (DoF) structure, two for orienting a needle-guide and one to preset the depth of needle insertion. The actual insertion is performed manually through the guide and up to the preset depth. To reduce the complexity and size of the robot next to the patient, the depth setting DoF is remote. Experimental results show that the robot is safe to use in any MRI environment (MRI-Safe). Comprehensive MRI tests show that the presence and motion of the robot in the MRI scanner cause virtually no image deterioration or signal-to-noise ratio change. Robots accuracy in bench test, CT-guided in-vitro, MRI-guided in-vitro , and animal tests are 0.37, 1.10, 2.09, and 2.58 mm, respectively. These values are acceptable for clinical use.
Urology | 2011
Misop Han; Chunwoo Kim; Pierre Mozer; Felix Schäfer; Shadie Badaan; Bogdan Vigaru; Kenneth S. Tseng; Doru Petrisor; Bruce J. Trock; Dan Stoianovici
OBJECTIVES To examine the feasibility of image-guided navigation using transrectal ultrasound (TRUS) to visualize the neurovascular bundle (NVB) during robot-assisted laparoscopic radical prostatectomy (RALP). The preservation of the NVB during radical prostatectomy improves the postoperative recovery of sexual potency. The accompanying blood vessels in the NVB can serve as a macroscopic landmark to localize the microscopic cavernous nerves in the NVB. METHODS A novel, robotic transrectal ultrasound probe manipulator (TRUS Robot) and three-dimensional (3-D) reconstruction software were developed and used concurrently with the daVinci surgical robot (Intuitive Surgical, Inc., Sunnyvale, CA) in a tandem-robot assisted laparoscopic radical prostatectomy (T-RALP). RESULTS After appropriate approval and informed consent were obtained, 3 subjects underwent T-RALP without associated complications. The TRUS Robot allowed a steady handling and remote manipulation of the TRUS probe during T-RALP. It also tracked the TRUS probe position accurately and allowed 3-D image reconstruction of the prostate and surrounding structures. Image navigation was performed by observing the tips of the daVinci surgical instruments in the live TRUS image. Blood vessels in the NVB were visualized using Doppler ultrasound. CONCLUSIONS Intraoperative 3-D image-guided navigation in T-RALP is feasible. The use of TRUS during radical prostatectomy can potentially improve the visualization and preservation of the NVB. Further studies are needed to assess the clinical benefit of T-RALP.
International Journal of Medical Robotics and Computer Assisted Surgery | 2011
Shadi Badaan; Doru Petrisor; Chunwoo Kim; Pierre Mozer; Dumitru Mazilu; Lucian Gruionu; Alex Patriciu; Kevin Cleary; Dan Stoianovici
Image‐guided robots are manipulators that operate based on medical images. Perhaps the most common class of image‐guided robots are robots for needle interventions. Typically, these robots actively position and/or orient a needle guide, but needle insertion is still done by the physician. While this arrangement may have safety advantages and keep the physician in control of needle insertion, actuated needle drivers can incorporate other useful features.
The Journal of Urology | 2012
Misop Han; Doyoung Chang; Chunwoo Kim; Brian J. Lee; Yihe Zuo; Hyung Joo Kim; Doru Petrisor; Bruce J. Trock; Alan W. Partin; Ronald Rodriguez; H. Ballentine Carter; Mohamad Allaf; Jongwon Kim; Dan Stoianovici
PURPOSE Transrectal ultrasound guided prostate biopsy results rely on physician ability to target the gland according to the biopsy schema. However, to our knowledge it is unknown how accurately the freehand, transrectal ultrasound guided biopsy cores are placed in the prostate and how the geometric distribution of biopsy cores may affect the prostate cancer detection rate. MATERIALS AND METHODS To determine the geometric distribution of cores, we developed a biopsy simulation system with pelvic mock-ups and an optical tracking system. Mock-ups were biopsied in a freehand manner by 5 urologists and by our transrectal ultrasound robot, which can support and move the transrectal ultrasound probe. We compared 1) targeting errors, 2) the accuracy and precision of repeat biopsies, and 3) the estimated significant prostate cancer (0.5 cm(3) or greater) detection rate using a probability based model. RESULTS Urologists biopsied cores in clustered patterns and under sampled a significant portion of the prostate. The robot closely followed the predefined biopsy schema. The mean targeting error of the urologists and the robot was 9.0 and 1.0 mm, respectively. Robotic assistance significantly decreased repeat biopsy errors with improved accuracy and precision. The mean significant prostate cancer detection rate of the urologists and the robot was 36% and 43%, respectively (p <0.0001). CONCLUSIONS Systematic biopsy with freehand transrectal ultrasound guidance does not closely follow the sextant schema and may result in suboptimal sampling and cancer detection. Repeat freehand biopsy of the same target is challenging. Robotic assistance with optimized biopsy schemas can potentially improve targeting, precision and accuracy. A clinical trial is needed to confirm the additional benefits of robotic assistance.
Journal of Endourology | 2010
Richard A. Pollock; Pierre Mozer; Thomas J. Guzzo; Jonathan Marx; Brian R. Matlaga; Doru Petrisor; Bogdan Vigaru; Shadie Badaan; Dan Stoianovici; Mohamad E. Allaf
AIM Precise targeting is essential for adequate treatment of lesions during image-guided therapy. The aim of this study was to compare the performance of two emerging image-guided targeting technologies in a phantom model. MATERIALS AND METHODS A computer-assisted navigation system and AcuBot were tested using three operators: an interventional radiologist and two endourologists. Fiducials were placed in an anatomic gelatin phantom and targeted by both systems. The images were reconstructed and analyzed using a specialized software package (Amira; Visage Imaging, Carlsbad, CA). Accuracy was assessed by measuring proximity of the tip of the needle to the fiducial on computed-tomography-guided imaging. Accuracy and time to target were quantified and compared. RESULTS The mean distance from the desired target for AcuBot was 1.2 mm (range: 0.39-2.82). The mean distance from the desired target for the navigation system was 5.8 mm (range: 1.8-11.9). The AcuBot was significantly more accurate than the navigation system (p < 0.0001). The mean time from target acquisition to needle placement was 37 seconds (range: 15-75) for the AcuBot and 108 seconds (range: 45-315) for the navigation system (p = 0.001). CONCLUSION Emerging technologies hold promise for increased accuracy during percutaneous targeted procedures. Both the AcuBot and the computer-assisted navigation system were accurate and efficient in a phantom targeting model. AcuBot was significantly more accurate, faster, and less user dependent than the navigation system. Further studies in animal and clinical studies are warranted to further advance this promising technology.
IEEE-ASME Transactions on Mechatronics | 2013
Dan Stoianovici; Chunwoo Kim; Felix Schäfer; Chien Ming Huang; Yihe Zuo; Doru Petrisor; Misop Han
We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure.