Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dost Öngür is active.

Publication


Featured researches published by Dost Öngür.


The Journal of Comparative Neurology | 2003

Architectonic subdivision of the human orbital and medial prefrontal cortex

Dost Öngür; Amon T. Ferry; Joseph L. Price

The structure of the human orbital and medial prefrontal cortex (OMPFC) was investigated using five histological and immunohistochemical stains and was correlated with a previous analysis in macaque monkeys [Carmichael and Price ( 1994 ) J. Comp. Neurol. 346:366–402]. A cortical area was recognized if it was distinct with at least two stains and was found in similar locations in different brains. All of the areas recognized in the macaque OMPFC have counterparts in humans. Areas 11, 13, and 14 were subdivided into areas 11m, 11l, 13a, 13b, 13m, 13l, 14r, and 14c. Within area 10, the region corresponding to area 10m in monkeys was divided into 10m and 10r, and area 10o (orbital) was renamed area 10p (polar). Areas 47/12r, 47/12m, 47/12l, and 47/12s occupy the lateral orbital cortex, corresponding to monkey areas 12r, 12m, 12l, and 12o. The agranular insula (areas Iam, Iapm, Iai, and Ial) extends onto the caudal orbital surface and into the horizontal ramus of the lateral sulcus. The growth of the frontal pole in humans has pushed area 25 and area 32pl, which corresponds to the prelimbic area 32 in Brodmanns monkey brain map, caudal and ventral to the genu of the corpus callosum. Anterior cingulate areas 24a and 24b also extend ventral to the genu of the corpus callosum. Area 32ac, corresponding to the dorsal anterior cingulate area 32 in Brodmanns human brain map, is anterior and dorsal to the genu. The parallel organization of the OMPFC in monkeys and humans allows experimental data from monkeys to be applied to studies of the human cortex. J. Comp. Neurol. 460:425–449, 2003.


NeuroImage | 2012

Anticorrelations in resting state networks without global signal regression

Xiaoqian J. Chai; Alfonso Nieto Castañón; Dost Öngür; Susan Whitfield-Gabrieli

Anticorrelated relationships in spontaneous signal fluctuation have been previously observed in resting-state functional magnetic resonance imaging (fMRI). In particular, it was proposed that there exists two systems in the brain that are intrinsically organized into anticorrelated networks, the default mode network, which usually exhibits task-related deactivations, and the task-positive network, which usually exhibits task-related activations during tasks that demands external attention. However, it is currently under debate whether the anticorrelations observed in resting state fMRI were valid or were instead artificially introduced by global signal regression, a common preprocessing technique to remove physiological and other noise in resting-state fMRI signal. We examined positive and negative correlations in resting-state connectivity using two different preprocessing methods: a component base noise reduction method (CompCor, Behzadi et al., 2007), in which principal components from noise regions-of-interest were removed, and the global signal regression method. Robust anticorrelations between a default mode network seed region in the medial prefrontal cortex and regions of the task-positive network were observed under both methods. Specificity of the anticorrelations was similar between the two methods. Specificity and sensitivity for positive correlations were higher under CompCor compared to the global regression method. Our results suggest that anticorrelations observed in resting-state connectivity are not an artifact introduced by global signal regression and might have biological origins, and that the CompCor method can be used to examine valid anticorrelations during rest.


The Journal of Comparative Neurology | 1998

Prefrontal Cortical Projections to the Hypothalamus in Macaque Monkeys

Dost Öngür; X. An; Joseph L. Price

The organization of projections from the macaque orbital and medial prefrontal cortex (OMPFC) to the hypothalamus and related regions of the diencephalon and midbrain was studied with retrograde and anterograde tracing techniques. Almost all of the prefrontal cortical projections to the hypothalamus arise from areas within the “medial prefrontal network,” as defined previously by Carmichael and Price ([1996] J. Comp. Neurol. 371:179–207). Outside of the OMPFC, only a few neurons in the temporal pole, anterior cingulate and insular cortex project to the hypothalamus. Axons from the OMPFC also innervate the basal forebrain, zona incerta, and ventral midbrain.


The Journal of Comparative Neurology | 1998

PREFRONTAL CORTICAL PROJECTIONS TO LONGITUDINAL COLUMNS IN THE MIDBRAIN PERIAQUEDUCTAL GRAY IN MACAQUE MONKEYS

X. An; Richard Bandler; Dost Öngür; Joseph L. Price

The origin and termination of prefrontal cortical projections to the periaqueductal gray (PAG) were defined with retrograde axonal tracers injected into the PAG and anterograde axonal tracers injected into the prefrontal cortex (PFC).


Biological Psychiatry | 2002

Low glial numbers in the amygdala in major depressive disorder

Michael P. Bowley; Wayne C. Drevets; Dost Öngür; Joseph L. Price

BACKGROUND Functional imaging studies implicate the prefrontal cortex and amygdala in major depressive disorder and bipolar disorder, and glial decreases have been reported in the prefrontal cortex. Here, glia and neurons were counted in the amygdala and entorhinal cortex in major depressive disorder, bipolar disorder, and control cases. METHODS Tissue blocks from major depressive disorder (7), bipolar disorder (10), and control (12) cases, equally divided between right and left, were cut into 50 microm sections and stained with the Nissl method. One major depressive disorder and all but two bipolar disorder cases had been treated with lithium or valproate. Neurons and glia were counted using stereological methods. RESULTS Glial density and the glia/neuron ratio were substantially reduced in the amygdala in major depressive disorder cases. The reduction was mainly accounted for by counts in the left hemisphere. No change was found in neurons. Average glia measures were not reduced in bipolar disorder cases; however, bipolar disorder cases not treated with lithium or valproate had significant glial reduction. Similar but smaller changes were found in the entorhinal cortex. CONCLUSIONS Glia are reduced in the amygdala in major depressive disorder, especially on the left side. The results suggest that lithium and valproate may moderate the glial reduction.


Molecular Psychiatry | 1998

Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders

W C Drevets; Dost Öngür; Joseph L. Price

The prefrontal cortex (PFC) ventral to the genu of the corpus callosum has been implicated in the modulation of visceral responses to stressful and emotionally provocative stimuli, based upon analysis of lesion effects involving this area in humans and experimental animals. In a recent magnetic resonance imaging (MRI) study of familial mood disorders, we demonstrated that the mean grey matter volume of this cortex is abnormally reduced in subjects with major depressive disorder (MDD) and bipolar disorder, irrespective of their treatment status or current mood state. Moreover, in preliminary histopathological assessments of subgenual PFC tissue taken post mortem from subjects with MDD and bipolar disorder we obtained results suggesting that this decrement in grey matter volume is associated with a reduction in glia without an equivalent loss of neurons. The potential functional significance of these neuroimaging and microscopic abnormalities is discussed with respect to evidence that subgenual PFC dysfunction may disturb stress-related autonomic and neuroendocrine responses and reward-related mesolimbic dopamine function. These data may thus hold important implications for the development of neural models of mood disorders that can account for the abnormal hedonic, motivational, neuroendocrine, and autonomic manifestations evident in these idiopathic conditions.


The Journal of Comparative Neurology | 2000

Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks.

Amon T. Ferry; Dost Öngür; Xinhai An; Joseph L. Price

The organization of projections from the prefrontal cortex (PFC) to the striatum in relation to previously defined “orbital” and “medial” networks within the PFC were studied in monkeys using anterograde and retrograde tracing techniques. The results indicate that the orbital and medial networks connect to different striatal regions. The ventromedial striatum (the medial caudate nucleus, accumbens nucleus, and ventral putamen) receives input predominantly from the medial PFC (mPFC) and orbital areas 12o, Iai, and 13a, which constitute the “medial” network. More specifically, caudal medial areas 32, 25, and 14r project to the medial edge of the caudate nucleus, accumbens nucleus, and ventromedial putamen, whereas rostral areas 10o, 10m, and 11m are restricted to the medial edge of the caudate. Projections from orbital areas 12o, 13a, and Iai extend more laterally into the lateral accumbens and the ventral putamen. Area 24 gives rise to a divided pattern of projections, including fibers to the ventromedial striatum, apparently from area 24b, and fibers to the dorsolateral striatum, apparently from area 24c. Other areas of orbital cortex (11l, 12m, 12l, 13m, 13l, Ial, and Iam) that constitute the “orbital” network project primarily to the central part of the rostral striatum. This region includes the central and lateral parts of the caudate nucleus, and the ventromedial putamen, on either side of the internal capsule. The results support the subdivision of the orbital and medial PFC into “medial” and “orbital” networks and suggest that the prefrontostriatal projections reflect the functional organization of the PFC rather than topographic location. J. Comp. Neurol. 425:447–470, 2000.


Biological Psychiatry | 2010

Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders.

Cagri Yuksel; Dost Öngür

In mood disorders, there is growing evidence for glutamatergic abnormalities derived from peripheral measures of glutamatergic metabolites in patients, postmortem studies on glutamate-related markers, and animal studies on the mechanism of action of available treatments. Magnetic resonance spectroscopy (MRS) has the potential to corroborate and extend these findings with the advantage of in vivo assessment of glutamate-related metabolites in different disease states, in response to treatment, and in relation with functional imaging data. In this article, we first review the biological significance of glutamate, glutamine, and Glx (composed mainly of glutamate and glutamine). Next, we review the MRS literature in mood disorders, examining these glutamate-related metabolites. Here, we find a highly consistent pattern of Glx-level reductions in major depressive disorder and elevations in bipolar disorder. In addition, studies of depression, regardless of diagnosis, provide suggestive evidence for reduced glutamine/glutamate ratio and in mania for elevated glutamine/glutamate ratio. These patterns suggest that the glutamate-related metabolite pool (not all of it necessarily relevant to neurotransmission) is constricted in major depressive disorder and expanded in bipolar disorder. Depressive and manic episodes may be characterized by modulation of the glutamine/glutamate ratio in opposite directions, possibly suggesting reduced versus elevated glutamate conversion to glutamine by glial cells, respectively. We discuss the implications of these results for the pathophysiology of mood disorders and suggest future directions for MRS studies.


Psychiatry Research-neuroimaging | 2010

Default mode network abnormalities in bipolar disorder and schizophrenia.

Dost Öngür; Miriam Lundy; Ian Greenhouse; Ann K. Shinn; Vinod Menon; Bruce M. Cohen; Perry F. Renshaw

The default-mode network (DMN) consists of a set of brain areas preferentially activated during internally focused tasks. We used functional magnetic resonance imaging (fMRI) to study the DMN in bipolar mania and acute schizophrenia. Participants comprised 17 patients with bipolar disorder (BD), 14 patients with schizophrenia (SZ) and 15 normal controls (NC), who underwent 10-min resting fMRI scans. The DMN was extracted using independent component analysis and template-matching; spatial extent and timecourse were examined. Both patient groups showed reduced DMN connectivity in the medial prefrontal cortex (mPFC) (BD: x=-2, y=54, z=-12; SZ: x=-2, y=22, z=18). BD subjects showed abnormal recruitment of parietal cortex (correlated with mania severity) while SZ subjects showed greater recruitment of the frontopolar cortex/basal ganglia. Both groups had significantly higher frequency fluctuations than controls. We found ventral mPFC abnormalities in BD and dorsal mPFC abnormalities in SZ. The higher frequency of BOLD signal oscillations observed in patients suggests abnormal functional organization of circuits in both disorders. Further studies are needed to determine how these abnormalities are related to specific symptoms of each condition.


Psychological Medicine | 2011

Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder

Kathryn E. Lewandowski; Bruce M. Cohen; Dost Öngür

BACKGROUND Neurocognitive dysfunction in schizophrenia (SZ), bipolar (BD) and related disorders represents a core feature of these illnesses, possibly a marker of underlying pathophysiology. Substantial overlap in domains of neuropsychological deficits has been reported among these disorders after illness onset. However, it is unclear whether deficits follow the same longitudinal pre- and post-morbid course across diagnoses. We examine evidence for neurocognitive dysfunction as a core feature of all idiopathic psychotic illnesses, and trace its evolution from pre-morbid and prodromal states through the emergence of overt psychosis and into chronic illness in patients with SZ, BD and related disorders. METHOD Articles reporting on neuropsychological functioning in patients with SZ, BD and related disorders before and after illness onset were reviewed. Given the vast literature on these topics and the present focus on cross-diagnostic comparisons, priority was given to primary data papers that assessed cross-diagnostic samples and recent meta-analyses. RESULTS Patients with SZ exhibit dysfunction preceding the onset of illness, which becomes more pronounced in the prodrome and early years following diagnosis, then settles into a stable pattern. Patients with BD generally exhibit typical cognitive development pre-morbidly, but demonstrate deficits by first episode that are amplified with worsening symptoms and exacerbations. CONCLUSIONS Neuropsychological deficits represent a core feature of SZ and BD; however, their onset and progression differ between diagnostic groups. A lifetime perspective on the evolution of neurocognitive deficits in SZ and BD reveals distinct patterns, and may provide a useful guide to the examination of the pathophysiological processes underpinning these functions across disorders.

Collaboration


Dive into the Dost Öngür's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matcheri S. Keshavan

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge