Doug J. Bartels
Vertex Pharmaceuticals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Doug J. Bartels.
The Journal of Infectious Diseases | 2008
Doug J. Bartels; Yi Zhou; Eileen Z. Zhang; Michelle Marcial; Randal Byrn; Thomas Pfeiffer; Ann M. Tigges; Bambang S. Adiwijaya; Chao Lin; Ann D. Kwong; Tara L. Kieffer
BACKGROUND The prevalence and clinical implications of naturally occurring variants that are resistant to hepatitis C virus (HCV) protease inhibitors in treatment-naive patients has not been reported. We report here the prevalence of such variants and their effect on clinical response. METHODS Population sequence analysis of the NS3.4A protease was conducted in 570 treatment-naive subjects. RESULTS Most subjects (98%) had wild-type virus. The remaining subjects had the following variants present in significant proportions (100%): V36M, 0.9%; R155K, 0.7%; V170A, 0.2%; and R109K, 0.2%. The V36M, R109K, and V170A substitutions confer low-level resistance (<7-fold) to protease inhibitors in replicon cells. The R155K substitution confers low-level resistance to telaprevir (TVR) and boceprevir and confers high-level resistance (>70-fold) to BILN 2061 and ITMN-191. Five subjects with the V36M or R109K variant were treated with 8-24 weeks of TVR and peginterferon-alpha2a (P) with or without ribavirin (R). Four achieved a sustained viral response, and 1 was lost to follow-up. In subjects with the R155K variant, TVR/PR provided greater antiviral activity than PR alone; however, the antiviral response was lower than that observed in subjects with wild-type virus. CONCLUSION High levels of naturally occurring protease inhibitor-resistant variants were uncommon (<1% each) in HCV treatment-naive patients. TVR/PR efficiently inhibited V36M and R109K variants and contributed partial antiviral activity against the R155K variant. As new HCV agents are evaluated in clinical trials, it will be important to monitor the effect of baseline variants on sensitivity.
Clinical Infectious Diseases | 2013
James C. Sullivan; Sandra De Meyer; Doug J. Bartels; Inge Dierynck; Eileen Z. Zhang; Joan Spanks; Ann M. Tigges; Anne Ghys; Jennifer Dorrian; Nathalie Adda; Emily C. Martin; Maria Beumont; Ira M. Jacobson; Kenneth E. Sherman; Stefan Zeuzem; G. Picchio; Tara L. Kieffer
BACKGROUND Telaprevir (TVR), a hepatitis C virus (HCV) NS3/4A protease inhibitor, has been approved to treat genotype 1 HCV. To understand the clinical impact of TVR-resistant variants, we analyzed samples from patients in phase 3 clinical trials to determine the frequency and retention of TVR-resistant variants in patients who did not achieve sustained virologic response (SVR). METHODS A total of 1797 patients were treated with TVR. Resistant variants (V36A/G/I/L/M, T54A/S, I132V [subtype 1a only], R155G/K/T/M, A156F/N/S/T/V, and D168N) were identified after treatment failure and at visits thereafter, by direct (population) sequencing of the NS3/4A region. Kaplan-Meier analysis was used to determine median time to loss of these variants. RESULTS Resistant variants were observed in 77% (299/388) of patients who did not achieve SVR. Resistance occurred more commonly in subtype 1a (86%; 232/269) than subtype 1b infections (56%; 67/119). After treatment failure, 355 patients had at least 1 follow-up visit (median follow-up period: 9.6 months). Of patients with resistance at time of failure and at least 1 follow-up visit, 60% (153/254) lost resistance. Kaplan-Meier analysis, including all patients with any sequence data after treatment failure, indicated that median time to wild type was 10.6 months (95% confidence interval [CI], 9.47-12.20) in subtype 1a and 0.9 months (95% CI, 0.00-2.07) in subtype 1b infections. CONCLUSIONS After failure to achieve SVR with TVR-based treatment, resistant variants are observed in most patients. However, presumably due to the lower fitness of those variants, they tend to be replaced with wild-type virus over time.
Journal of Virology | 2013
Doug J. Bartels; James C. Sullivan; Eileen Z. Zhang; Ann M. Tigges; Jennifer Dorrian; Sandra De Meyer; Darin Takemoto; Elizabeth Dondero; Ann D. Kwong; Gaston Picchio; Tara L. Kieffer
ABSTRACT The prevalence of naturally occurring hepatitis C virus (HCV) variants that are less sensitive to direct-acting antiviral (DAA) inhibitors has not been fully characterized. We used population sequence analysis to assess the frequency of such variants in plasma samples from 3,447 DAA-naive patients with genotype 1 HCV. In general, HCV variants with lower-level resistance (3- to 25-fold increased 50% inhibitor concentration [IC50]) to telaprevir were observed as the dominant species in 0 to 3% of patients, depending on the specific variant, whereas higher-level resistant variants (>25-fold-increased IC50) were not observed. Specific variants resistant to NS5A inhibitors were predominant in up to 6% of patients. Most variants resistant to nucleo(s/t)ide active-site NS5B polymerase inhibitors were not observed, whereas variants resistant to non-nucleoside allosteric inhibitors were observed in up to 18% of patients. The presence of DAA-resistant variants in NS5A, NS5B, or NS3 (including telaprevir-resistant variants), in baseline samples of treatment-naive patients receiving a telaprevir-based regimen in phase 3 studies did not affect the sustained viral response (SVR). Treatment-naive patients with viral populations containing the telaprevir-resistant variants NS3 V36M, T54S, or R155K at baseline achieved a 74% SVR rate, whereas patients with no resistant variants detected prior to treatment achieved a 76% SVR rate. The effect of specific resistant variant frequency on response to various DAA treatments in different patient populations, including interferon nonresponders, should be further studied.
Antimicrobial Agents and Chemotherapy | 2008
Yi Zhou; Doug J. Bartels; Brian Hanzelka; Ute Müh; Yunyi Wei; Hui-May Chu; Ann M. Tigges; Debra L. Brennan; B. Govinda Rao; Lora Swenson; Ann D. Kwong; Chao Lin
ABSTRACT In patients chronically infected with hepatitis C virus (HCV) strains of genotype 1, rapid and dramatic antiviral activity has been observed with telaprevir (VX-950), a highly selective and potent inhibitor of the HCV NS3-4A serine protease. HCV variants with substitutions in the NS3 protease domain were observed in some patients during telaprevir dosing. In this study, purified protease domain proteins and reconstituted HCV subgenomic replicons were used for phenotypic characterization of many of these substitutions. V36A/M or T54A substitutions conferred less than eightfold resistance to telaprevir. Variants with double substitutions at Val36 plus Thr54 had ∼20-fold resistance to telaprevir, and variants with double substitutions at Val36 plus Arg155 or Ala156 had >40-fold resistance to telaprevir. An X-ray structure of the HCV strain H protease domain containing the V36M substitution in a cocomplex with an NS4A cofactor peptide was solved at a 2.4-Å resolution. Except for the side chain of Met36, the V36M variant structure is identical to that of the wild-type apoenzyme. The in vitro replication capacity of most variants was significantly lower than that of the wild-type replicon in cells, which is consistent with the impaired in vivo fitness estimated from telaprevir-dosed patients. Finally, the sensitivity of these replicon variants to alpha interferon or ribavirin remained unchanged compared to that of the wild-type.
PLOS ONE | 2012
Tara L. Kieffer; Sandra De Meyer; Doug J. Bartels; James C. Sullivan; Eileen Z. Zhang; Ann M. Tigges; Inge Dierynck; Joan Spanks; Jennifer Dorrian; Min Jiang; Bambang S. Adiwijaya; Anne Ghys; Maria Beumont; Robert S. Kauffman; Nathalie Adda; Ira M. Jacobson; Kenneth E. Sherman; Stefan Zeuzem; Ann D. Kwong; G. Picchio
Background In patients with genotype 1 chronic hepatitis C infection, telaprevir (TVR) in combination with peginterferon and ribavirin (PR) significantly increased sustained virologic response (SVR) rates compared with PR alone. However, genotypic changes could be observed in TVR-treated patients who did not achieve an SVR. Methods Population sequence analysis of the NS3•4A region was performed in patients who did not achieve SVR with TVR-based treatment. Results Resistant variants were observed after treatment with a telaprevir-based regimen in 12% of treatment-naïve patients (ADVANCE; T12PR arm), 6% of prior relapsers, 24% of prior partial responders, and 51% of prior null responder patients (REALIZE, T12PR48 arms). NS3 protease variants V36M, R155K, and V36M+R155K emerged frequently in patients with genotype 1a and V36A, T54A, and A156S/T in patients with genotype 1b. Lower-level resistance to telaprevir was conferred by V36A/M, T54A/S, R155K/T, and A156S variants; and higher-level resistance to telaprevir was conferred by A156T and V36M+R155K variants. Virologic failure during telaprevir treatment was more common in patients with genotype 1a and in prior PR nonresponder patients and was associated with higher-level telaprevir-resistant variants. Relapse was usually associated with wild-type or lower-level resistant variants. After treatment, viral populations were wild-type with a median time of 10 months for genotype 1a and 3 weeks for genotype 1b patients. Conclusions A consistent, subtype-dependent resistance profile was observed in patients who did not achieve an SVR with telaprevir-based treatment. The primary role of TVR is to inhibit wild-type virus and variants with lower-levels of resistance to telaprevir. The complementary role of PR is to clear any remaining telaprevir-resistant variants, especially higher-level telaprevir-resistant variants. Resistant variants are detectable in most patients who fail to achieve SVR, but their levels decline over time after treatment.
Journal of Biological Chemistry | 2007
Yi Zhou; Ute Müh; Brian Hanzelka; Doug J. Bartels; Yunyi Wei; B.G Rao; Debra L. Brennan; Ann M. Tigges; Lora Swenson; Ann D. Kwong; Chao Lin
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3·4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg155 of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg155 was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg155 with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5Å. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys155 side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon α or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.
Journal of Biological Chemistry | 2007
Yi Zhou; Ute Müh; Brian Hanzelka; Doug J. Bartels; Yunyi Wei; B. Govinda Rao; Debra L. Brennan; Ann M. Tigges; Lora Swenson; Ann D. Kwong; Chao Lin
Telaprevir (VX-950) is a highly selective, potent inhibitor of the hepatitis C virus (HCV) NS3·4A serine protease. It has demonstrated strong antiviral activity in patients chronically infected with genotype 1 HCV when dosed alone or in combination with peginterferon alfa-2a. Substitutions of Arg155 of the HCV NS3 protease domain have been previously detected in HCV isolates from some patients during telaprevir dosing. In this study, Arg155 was replaced with various residues in genotype 1a protease domain proteins and in genotype 1b HCV subgenomic replicons. Characterization of both the purified enzymes and reconstituted replicon cells demonstrated that substitutions of Arg155 with these residues conferred low level resistance to telaprevir (<25-fold). An x-ray structure of genotype 1a HCV protease domain with the R155K mutation, in a complex with an NS4A co-factor peptide, was determined at a resolution of 2.5Å. The crystal structure of the R155K protease is essentially identical to that of the wild-type apoenzyme (Protein Data Bank code 1A1R) except for the side chain of mutated residue 155. Telaprevir was docked into the x-ray structure of the R155K protease, and modeling analysis suggests that the P2 group of telaprevir loses several hydrophobic contacts with the Lys155 side chain. It was demonstrated that replicon cells containing substitutions at NS3 protease residue 155 remain fully sensitive to interferon α or ribavirin. Finally, these variant replicons were shown to have reduced replication capacity compared with the wild-type HCV replicon in cells.
Virology Journal | 2013
Eileen Z. Zhang; Doug J. Bartels; JDan Frantz; Sheila Seepersaud; Judith A. Lippke; Benjamin Shames; Yi Zhou; Chao Lin; Ann Kwong; Tara L. Kieffer
BackgroundDirect-acting antiviral (DAAs) agents for hepatitis C virus (HCV) span a variety of targets, including proteins encoded by the NS3/4A, NS4B, NS5A, and NS5B genes. Treatment with DAAs has been shown to select variants with sequence changes in the HCV genome encoding amino acids that may confer resistance to the treatment. In order to assess these effects in patients, a Reverse Transcription Polymerase Chain Reaction (RT-PCR) method was developed to sequence these regions of HCV from patient plasma.MethodsA method was developed to amplify and sequence genotype 1 HCV RNA from patient plasma. Optimization of HCV RNA isolation, cDNA synthesis, and nested PCR steps were performed. The optimization of HCV RNA isolation, design of RT-PCR primers, optimization of RT-PCR amplification conditions and reagents, and the evaluation of the RT-PCR method performance is described.ResultsThe optimized method is able to successfully, accurately, and reproducibly amplify near full-length genotype 1 HCV RNA containing a wide range of concentrations (103 to 108 IU/mL) with a success rate of 97%. The lower limit of detection was determined to be 1000 IU/mL HCV RNA.ConclusionsThis assay allows viral sequencing of all regions targeted by the most common DAAs currently in development, as well as the possibility to determine linkage between variants conferring resistance to multiple DAAs used in combination therapy.
Antimicrobial Agents and Chemotherapy | 2013
Min Jiang; Nagraj Mani; Chao Lin; Andrzej Ardzinski; Michelle Nelson; Dugan Reagan; Doug J. Bartels; Yi Zhou; Olivier Nicolas; B. Govinda Rao; Ute Müh; Brian Hanzelka; Ann M. Tigges; Rene Rijnbrand; Tara L. Kieffer
ABSTRACT Telaprevir is a linear, peptidomimetic small molecule that inhibits hepatitis C virus (HCV) replication by specifically inhibiting the NS3·4A protease. In phase 3 clinical studies, telaprevir in combination with peginterferon and ribavirin (PR) significantly improved sustained virologic response (SVR) rates in genotype 1 chronic HCV-infected patients compared with PR alone. In patients who do not achieve SVR after treatment with telaprevir-based regimens, variants with mutations in the NS3·4A protease region have been observed. Such variants can contribute to drug resistance and limit the efficacy of treatment. To gain a better understanding of the viral resistance profile, we conducted phenotypic characterization of the variants using HCV replicons carrying site-directed mutations. The most frequently observed (significantly enriched) telaprevir-resistant variants, V36A/M, T54A/S, R155K/T, and A156S, conferred lower-level resistance (3- to 25-fold), whereas A156T and V36M+R155K conferred higher-level resistance (>25-fold) to telaprevir. Rarely observed (not significantly enriched) variants included V36I/L and I132V, which did not confer resistance to telaprevir; V36C/G, R155G/I/M/S, V36A+T54A, V36L+R155K, T54S+R155K, and R155T+D168N, which conferred lower-level resistance to telaprevir; and A156F/N/V, V36A+R155K/T, V36M+R155T, V36A/M+A156T, T54A+A156S, T54S+A156S/T, and V36M+T54S+R155K, which conferred higher-level resistance to telaprevir. All telaprevir-resistant variants remained fully sensitive to alpha interferon, ribavirin, and HCV NS5B nucleoside and nonnucleoside polymerase inhibitors. In general, the replication capacity of telaprevir-resistant variants was lower than that of the wild-type replicon.
Antimicrobial Agents and Chemotherapy | 2014
Min Jiang; Eileen Z. Zhang; Andrzej Ardzinski; Ann M. Tigges; Andrew P. Davis; James C. Sullivan; Michelle Nelson; Joan Spanks; Jennifer Dorrian; Olivier Nicolas; Doug J. Bartels; B. Govinda Rao; Rene Rijnbrand; Tara L. Kieffer
ABSTRACT VX-222, a thiophene-2-carboxylic acid derivative, is a selective nonnucleoside inhibitor of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In phase 1 and 2 clinical studies, VX-222 demonstrated effective antiviral efficacy, with substantial reductions in plasma HCV RNA in patients chronically infected with genotype 1 HCV. To characterize the potential for selection of VX-222-resistant variants in HCV-infected patients, the HCV NS5B gene was sequenced at baseline and during and after 3 days of VX-222 dosing (monotherapy) in a phase 1 study. Variants with the substitutions L419C/I/M/P/S/V, R422K, M423I/T/V, I482L/N/T, A486S/T/V, and V494A were selected during VX-222 dosing, and their levels declined over time after the end of dosing. Phenotypic analysis of these variants was conducted using HCV replicons carrying site-directed mutations. Of the 17 variants, 14 showed reduced susceptibility to VX-222 compared with the wild type, with the L419C/S and R422K variants having higher levels of resistance (>200-fold) than the rest of the variants (6.8- to 76-fold). The M423I and A486S variants remained susceptible to VX-222. The 50% effective concentration (EC50) for the L419P variant could not be obtained due to the poor replication of this replicon. The majority of the variants (15/17) were less fit than the wild type. A subset of the variants, predominately the L419S and R422K variants, were observed when the efficacy and safety of VX-222- and telaprevir-based regimens given for 12 weeks were investigated in genotype 1 HCV-infected patients in a phase 2 study. The NS3 and NS5B variants selected during the dual combination therapy showed reduced susceptibility to both telaprevir and VX-222 and had a lower replication capacity than the wild type. The phase 1b study has the ClinicalTrials.gov identifier NCT00911963, and the phase 2a study has ClinicalTrials.gov identifier NCT01080222.