Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doug J. Hinchliffe is active.

Publication


Featured researches published by Doug J. Hinchliffe.


Theoretical and Applied Genetics | 2010

Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling

Doug J. Hinchliffe; William R. Meredith; Kathleen M. Yeater; Hee Jin Kim; Andrew W. Woodward; Z. Jeffrey Chen; Barbara A. Triplett

Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.


BMC Genomics | 2011

A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.)

Doug J. Hinchliffe; Rickie B. Turley; Marina Naoumkina; Hee Jin Kim; Yuhong Tang; Kathleen M. Yeater; Ping Li; David D. Fang

BackgroundCotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L.) fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2) that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation.ResultsTwo near-isogenic lines of Ligon lintless-2 (Li2) cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5). An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR) markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS) homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991) that displayed complete linkage to the Li2 locus.ConclusionsIn the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on chromosome 18 and resided in a gene with similarity to a putative plectin-related protein. The complete linkage suggests that this expressed sequence may be the Li2 gene.


BMC Genomics | 2013

Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.)

Marina Naoumkina; Doug J. Hinchliffe; Rickie B. Turley; John M. Bland; David D. Fang

BackgroundThe length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li2) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development. The Li2 mutant phenotype provides an ideal model system to study fiber elongation. To understand metabolic processes involved in cotton fiber elongation, changes in metabolites and transcripts in the Li2 mutant fibers were compared to wild-type fibers during development.ResultsPrincipal component analysis of metabolites from GC-MS data separated Li2 mutant fiber samples from WT fiber samples at the WT elongation stage, indicating that the Li2 mutation altered the metabolome of the mutant fibers. The observed alterations in the Li2 metabolome included significant reductions in the levels of detected free sugars, sugar alcohols, sugar acids, and sugar phosphates. Biological processes associated with carbohydrate biosynthesis, cell wall loosening, and cytoskeleton were also down-regulated in Li2 fibers. Gamma-aminobutyric acid, known as a signaling factor in many organisms, was significantly elevated in mutant fibers. Higher accumulation of 2-ketoglutarate, succinate, and malate suggested higher nitrate assimilation in the Li2 line. Transcriptional activation of genes involved in nitrogen compound metabolism along with changes in the levels of nitrogen transport amino acids suggested re-direction of carbon flow into nitrogen metabolism in Li2 mutant fibers.ConclusionsThis report provides the first comprehensive analysis of metabolite and transcript changes in response to the Li2 mutation in elongating fibers. A number of factors associated with cell elongation found in this study will facilitate further research in understanding metabolic processes of cotton fiber elongation.


PLOS ONE | 2014

The Li2 Mutation Results in Reduced Subgenome Expression Bias in Elongating Fibers of Allotetraploid Cotton (Gossypium hirsutum L.)

Marina Naoumkina; Gregory N. Thyssen; David D. Fang; Doug J. Hinchliffe; Christopher Florane; Kathleen M. Yeater; Justin T. Page

Next generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G. raimondii) for homeologous gene expression analysis. The majority of homeologous genes, 83.6% according to the reference genome, were expressed during fiber elongation. Our results revealed: 1) approximately two times more genes were induced in the AT subgenome comparing to the DT subgenome in wild type and mutant fiber; 2) the subgenome expression bias was significantly reduced in the Li2 fiber transcriptome; 3) Li2 had a significantly greater effect on the DT than on the AT subgenome. Transcriptional regulators and cell wall homeologous genes significantly affected by the Li2 mutation were reviewed in detail. This is the first report to explore the effects of a single mutation on homeologous gene expression in allotetraploid cotton. These results provide deeper insights into the evolution of allotetraploid cotton gene expression and cotton fiber development.


Gene | 2012

Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.)

Hee Jin Kim; Barbara A. Triplett; Hong-Bin Zhang; Mi-Kyung Lee; Doug J. Hinchliffe; Ping Li; David D. Fang

Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton species producing over 90% of the worlds cotton fibers. Although G. hirsutum CesAs (GhCesAs) are responsible for cellulose production in cotton fiber, very limited numbers of GhCesA genes have been identified. Here, we report isolating and characterizing a pair of homeologous CesA2 genes and their full-length cDNAs from allotetraploid cotton. The GhCesA2-A(T) gene from the A-subgenome and GhCesA2-D(T) gene from the D-subgenome were screened from a G. hirsutum BAC library. These genes shared 92% sequence similarity throughout the entire sequence. The coding sequences were nearly identical, and the deduced amino acid sequences from GhCesA2-A(T) (1,039 amino acids) and GhCesA2-D(T) (1,040 amino acids) were identical except four amino acids, whereas the noncoding sequences showed divergence. Sequence analyses showed that all exons of GhCesA2-A(T) contained consensus splice donor dinucleotides, but one exon in GhCesA2-D(T) contained nonconsensus splice donor dinucleotides. Although the nonconsensus splice donor dinucleotides were previously suggested to be involved in alternative splice or pseudogenization, our results showed that a majority of GhCesA2-A(T) and GhCesA2-D(T) transcripts consisted of functional and full-length transcripts with little evidence for alternative mRNA isoforms in developing cotton fibers. Expression analyses showed that GhCesA2-A(T) and GhCesA2-D(T) shared common temporal and spatial expression patterns, and they were highly and preferentially expressed during the cellulose biosynthesis stage in developing cotton fibers. The observations of higher expression levels of both GhCesA2-A(T) and GhCesA2-D(T) in developing fibers of one near-isogenic line (NIL) with higher fiber bundle strength over the other NIL with lower fiber bundle strength suggested that the differential expression of genes associated with secondary cell wall cellulose biosynthesis in developing fiber might affect cotton fiber properties.


PLOS ONE | 2013

A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of Ligon lintless-2 mutant of cotton (Gossypium hirsutum L.).

Matthew K. Gilbert; John M. Bland; Jay M. Shockey; Heping Cao; Doug J. Hinchliffe; David D. Fang; Marina Naoumkina

Ligon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated. The predicted amino acid sequence showed ~53% similarity with Arabidopsis UGT73C sub-family members and the UDP-glycosyltransferase was designated as UGT73C14. When expressed in Escherichia coli as a recombinant protein with a maltose binding protein tag, UGT73C14 displayed enzymatic activity toward ABA and utilized UDP-glucose and UDP-galactose as the sugar donors. The recombinant UGT73C14 converted natural occurring isoform (+)-cis, trans-ABA better than (+)-trans, trans-ABA and (-)-cis, trans-ABA. Transgenic Arabidopsis plants constitutively overexpressing UGT73C14 did not show phenotypic changes under standard growth conditions. However, the increased glycosylation of ABA resulted in phenotypic changes in post-germinative growth and seedling establishment, confirming in vivo activity of UGT73C14 for ABA. This suggests that the expression level of UGT73C14 is regulated by the observed elevated levels of ABA in developing fibers of the Li 2 mutant line and may be involved in the regulation of ABA homeostasis.


BMC Genomics | 2016

Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li 1 ) and −2 (Li 2 ) revealed a role for miRNAs and their targets in cotton fiber elongation

Marina Naoumkina; Gregory N. Thyssen; David D. Fang; Doug J. Hinchliffe; Christopher Florane; Johnie N. Jenkins

BackgroundThe length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon-lintless-1 (Li1) and −2 (Li2) are monogenic and dominant mutations that result in an extreme reduction in the length of lint fiber on mature seeds. In a near-isogenic state with wild type cotton these two short fiber mutants provide an effective model system to study the mechanisms of fiber elongation. Plant miRNAs regulate many aspects of growth and development. However, the mechanism underlying the miRNA-mediated regulation of fiber development is largely unknown.ResultsSmall RNA libraries constructed from developing fiber cells of the short fiber mutants Li1 and Li2 and their near-isogenic wild type lines were sequenced. We identified 24 conservative and 147 novel miRNA families with targets that were detected through degradome sequencing. The distribution of the target genes into functional categories revealed the largest set of genes were transcription factors. Expression profiles of 20 miRNAs were examined across a fiber developmental time course in wild type and short fiber mutations. We conducted correlation analysis between miRNA transcript abundance and the length of fiber for 11 diverse Upland cotton lines. The expression patterns of 4 miRNAs revealed significant negative correlation with fiber lengths of 11 cotton lines.ConclusionsOur results suggested that the mutations have changed the regulation of miRNAs expression during fiber development. Further investigations of differentially expressed miRNAs in the Li1 and Li2 mutants will contribute to better understanding of the regulatory mechanisms of cotton fiber development. Four miRNAs negatively correlated with fiber length are good candidates for further investigations of miRNA regulation of important genotype dependent fiber traits. Thus, our results will contribute to further studies on the role of miRNAs in cotton fiber development and will provide a tool for fiber improvement through molecular breeding.


Journal of Experimental Botany | 2016

The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton ( Gossypium hirsutum L.) fibres

Doug J. Hinchliffe; Brian D. Condon; Gregory N. Thyssen; Marina Naoumkina; Crista A. Madison; Michael Reynolds; Christopher D. Delhom; David D. Fang; Ping Li; Jack C. McCarty

Highlight The brown fibre cotton Lc1 locus is linked to a 1.4Mb genomic inversion that activates GhTT2_A07. This mutation upregulates flavonoid biosynthesis and confers natural flame retardancy.


Textile Research Journal | 2015

Cottonscope fiber maturity, fineness, and ribbon width measurements with different sample sizes:

James Rodgers; Geoffrey Rs Naylor; Xiaoliang Cui; Chris Delhom; Doug J. Hinchliffe

The accurate and precise measurement of cotton maturity and fineness is often difficult, laborious, and/or expensive to perform. The Cottonscope® rapidly, accurately, and precisely measures fiber maturity and fineness with small quantities of sample (approximately 50 mg). Interest has been expressed in the use of different sample weights of fiber, especially lower sample weights by geneticists. A program was implemented to establish the capabilities of the Cottonscope to rapidly and accurately measure maturity (maturity ratio (MR), original polarized light microscopy maturity ratio (MRBF)), fineness, and ribbon width with different sample weights of fiber. The change in sample weight significantly impacted the Cottonscope results for MR, fineness, and ribbon width. Fineness was most impacted by varied sample weight. The impacts of sample weights on the cotton results were removed by re-calibrating the instrument at each sample weight. Decreasing the sample weight below 50 mg increased sample measurement times, especially at 10 mg sample weight. These results demonstrated that the Cottonscope can accurately and precisely measure the fiber’s maturity, fineness, and ribbon width with cotton fiber samples as small as 10 mg.


Textile Research Journal | 2017

The adsorption of alkyl-dimethyl-benzyl-ammonium chloride onto cotton nonwoven hydroentangled substrates at the solid–liquid interface is minimized by additive chemistries

Doug J. Hinchliffe; Brian D. Condon; Ryan Slopek; Michael Reynolds

Quaternary ammonium compounds, commonly referred to as quats, are cationic surfactants widely used as the active biocidal ingredient for disposable disinfecting wipes. The cationic nature of quats results in a strong ionic interaction and adsorption onto wipes materials that have an anionic surface charge, such as cellulosic materials, including cotton. The degree of adsorption of quats onto cotton nonwovens is affected by pretreatment of the substrate, more specifically whether it is a greige or a scoured and bleached fabric. This study examined the effect of varying the chemical and physical properties of solutions on the adsorption of the quat alkyl-dimethyl-benzyl-ammonium chloride (ADBAC) onto greige and scoured and bleached cotton nonwoven fabrics produced by hydroentanglement. At a constant surfactant concentration, the liquor ratio, pH, temperature, and concentrations of various electrolytes in the solution were varied and the amount of ADBAC depleted from solution was determined over time. The results suggested that a more alkaline solution increased the amount of ADBAC adsorbed onto both cotton nonwoven fabrics, while a more acidic solution reduced ADBAC adsorption. Likewise, increasing the temperature and concentration of salts in the solution reduced the adsorption of ADBAC onto the cotton fabrics. The presence of nonionic surfactants or low molecular weight quats also reduced ADBAC adsorption onto cotton fabrics in a concentration-dependent manner. The results of this study will provide guidance for optimized chemical formulations compatible with disposable disinfecting cotton-based wipes, cloths, and other cotton-containing implements intended for use in cleaning and disinfecting applications.

Collaboration


Dive into the Doug J. Hinchliffe's collaboration.

Top Co-Authors

Avatar

David D. Fang

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Gregory N. Thyssen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Marina Naoumkina

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Crista A. Madison

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Hee Jin Kim

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Brian D. Condon

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Barbara A. Triplett

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. Yeater

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Christopher B. Florane

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Delhom

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge