Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas A. Levine is active.

Publication


Featured researches published by Douglas A. Levine.


Nature Biotechnology | 2012

Absolute quantification of somatic DNA alterations in human cancer

Scott L. Carter; Kristian Cibulskis; Elena Helman; Aaron McKenna; Hui Shen; Travis I. Zack; Peter W. Laird; Robert C. Onofrio; Wendy Winckler; Barbara A. Weir; Rameen Beroukhim; David Pellman; Douglas A. Levine; Eric S. Lander; Matthew Meyerson; Gad Getz

We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.


Nature Reviews Cancer | 2011

Rethinking ovarian cancer: recommendations for improving outcomes.

Sebastian Vaughan; Jermaine Coward; Robert C. Bast; Andrew Berchuck; Jonathan S. Berek; James D. Brenton; George Coukos; Christopher C. Crum; Ronny Drapkin; Dariush Etemadmoghadam; Michael Friedlander; Hani Gabra; Stan B. Kaye; Christopher J. Lord; Ernst Lengyel; Douglas A. Levine; Iain A. McNeish; Usha Menon; Gordon B. Mills; Kenneth P. Nephew; Amit M. Oza; Anil K. Sood; Euan A. Stronach; Henning Walczak; David Bowtell; Frances R. Balkwill

There have been major advances in our understanding of the cellular and molecular biology of the human malignancies that are collectively referred to as ovarian cancer. At a recent Helene Harris Memorial Trust meeting, an international group of researchers considered actions that should be taken to improve the outcome for women with ovarian cancer. Nine major recommendations are outlined in this Opinion article.


Nature | 2008

Resistance to therapy caused by intragenic deletion in BRCA2.

Stacey L. Edwards; Rachel Brough; Christopher J. Lord; Rachael Natrajan; Radost Vatcheva; Douglas A. Levine; Jeff Boyd; Js Reis-Filho; Alan Ashworth

Cells with loss of BRCA2 function are defective in homologous recombination (HR) and are highly sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP), which provides the basis for a new therapeutic approach. Here we show that resistance to PARP inhibition can be acquired by deletion of a mutation in BRCA2. We derived PARP-inhibitor-resistant (PIR) clones from the human CAPAN1 pancreatic cancer cell line, which carries the protein-truncating c.6174delT frameshift mutation. PIR clones could form DNA-damage-induced RAD51 nuclear foci and were able to limit genotoxin-induced genomic instability, both hallmarks of a competent HR pathway. New BRCA2 isoforms were expressed in the resistant lines as a result of intragenic deletion of the c.6174delT mutation and restoration of the open reading frame (ORF). Reconstitution of BRCA2-deficient cells with these revertant BRCA2 alleles rescued PARP inhibitor sensitivity and HR deficiency. Most of the deletions in BRCA2 were associated with small tracts of homology, and possibly arose from error-prone repair caused by BRCA2 deficiency. Similar ORF-restoring mutations were present in carboplatin-resistant ovarian tumours from c.6174delT mutation carriers. These observations have implications for understanding drug resistance in BRCA mutation carriers as well as in defining functionally important domains within BRCA2.


Nature | 2014

Proteogenomic characterization of human colon and rectal cancer

Bing Zhang; Jing Wang; Xiaojing Wang; Jing Zhu; Qi Liu; Zhiao Shi; Matthew C. Chambers; Lisa J. Zimmerman; Kent Shaddox; Sangtae Kim; Sherri R. Davies; Sean Wang; Pei Wang; Christopher R. Kinsinger; Robert Rivers; Henry Rodriguez; R. Reid Townsend; Matthew J. Ellis; Steven A. Carr; David L. Tabb; Robert J. Coffey; Robbert J. C. Slebos; Daniel C. Liebler; Michael A. Gillette; Karl R. Klauser; Eric Kuhn; D. R. Mani; Philipp Mertins; Karen A. Ketchum; Amanda G. Paulovich

Extensive genomic characterization of human cancers presents the problem of inference from genomic abnormalities to cancer phenotypes. To address this problem, we analysed proteomes of colon and rectal tumours characterized previously by The Cancer Genome Atlas (TCGA) and perform integrated proteogenomic analyses. Somatic variants displayed reduced protein abundance compared to germline variants. Messenger RNA transcript abundance did not reliably predict protein abundance differences between tumours. Proteomics identified five proteomic subtypes in the TCGA cohort, two of which overlapped with the TCGA ‘microsatellite instability/CpG island methylation phenotype’ transcriptomic subtype, but had distinct mutation, methylation and protein expression patterns associated with different clinical outcomes. Although copy number alterations showed strong cis- and trans-effects on mRNA abundance, relatively few of these extend to the protein level. Thus, proteomics data enabled prioritization of candidate driver genes. The chromosome 20q amplicon was associated with the largest global changes at both mRNA and protein levels; proteomics data highlighted potential 20q candidates, including HNF4A (hepatocyte nuclear factor 4, alpha), TOMM34 (translocase of outer mitochondrial membrane 34) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase). Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords a new paradigm for understanding cancer biology.


Nature Communications | 2013

Evaluating cell lines as tumour models by comparison of genomic profiles

Silvia Domcke; Rileen Sinha; Douglas A. Levine; Chris Sander; Nikolaus Schultz

Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types.


Clinical Cancer Research | 2005

Frequent Mutation of the PIK3CA Gene in Ovarian and Breast Cancers

Douglas A. Levine; Faina Bogomolniy; Cindy J. Yee; Alex E. Lash; Richard R. Barakat; Patrick I. Borgen; Jeffrey E. Boyd

Purpose: Activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, resulting in increased cell proliferation, survival, and motility, is believed to play an oncogenic role in many cancer types. The PIK3CA gene encodes the p110α catalytic subunit of PI3K, and is amplified in some ovarian cancers, whereas the AKT2 gene is amplified in some ovarian, breast, and pancreatic cancers. Recently, in a mutational screen of eight PI3K genes and eight PI3K-like genes, PIK3CA was found to be the only gene affected by somatic mutations, which were observed frequently in gastrointestinal and brain cancers. Here, we test whether PIK3CA is subject to mutation in ovarian and breast cancers. Experimental Design: Exons 9 and 20, encoding the highly conserved helical and kinase domains of PIK3CA, were subjected to sequence analysis in 198 advanced stage epithelial ovarian carcinomas and 72 invasive breast carcinomas (48 of ductal histology and 24 of lobular histology). Results: Somatic missense mutations were observed in 24 of 198 (12%) ovarian carcinomas, and in 13 of 72 (18%) breast carcinomas. Conclusions: These data indicate that mutations of PIK3CA play an oncogenic role in substantial fractions of ovarian and breast carcinomas, and in consideration of mutation of other components of the PI3K-AKT pathway in both tumor types, confirm the major oncogenic role of this pathway in ovarian and breast carcinomas.


Gynecologic Oncology | 2009

Improved progression-free and overall survival in advanced ovarian cancer as a result of a change in surgical paradigm☆

Dennis S. Chi; Eric L. Eisenhauer; Oliver Zivanovic; Yukio Sonoda; Nadeem R. Abu-Rustum; Douglas A. Levine; Matthew W. Guile; Robert E. Bristow; Carol Aghajanian; Richard R. Barakat

OBJECTIVE To determine the impact on progression-free survival (PFS) and overall survival (OS) of a programmatic change in surgical approach to advanced epithelial ovarian cancer. METHODS Two groups of patients with stage IIIC and IV ovarian, tubal, and peritoneal carcinoma were compared. Group 1, the control group, consisted of all 168 patients who underwent primary cytoreduction from 1/96 to 12/99. Group 2, the study group, consisted of all 210 patients who underwent primary surgery from 1/01 to 12/04, during which time a more comprehensive debulking of upper abdominal disease was utilized. RESULTS There were no differences between the groups in age, primary site of disease, surgical stage, tumor grade, American Society of Anesthesiologists class, preoperative serum CA-125 and platelet levels, percentage with or amount of ascites, size or location of largest tumor mass, or type of postoperative chemotherapy. Patients in Group 2 vs Group 1 more frequently had extensive upper abdominal procedure(s) (38% vs 0%, respectively; P<0.001) and cytoreduction to residual disease <1 cm (80% vs 46%, respectively; P<0.01). Five-year PFS and OS rates were significantly improved in Group 2. For Group 2 vs Group 1 patients, 5-year PFS rates were 31% vs 14%, respectively (hazard ratio, 0.757; 95% CI, 0.601-0.953; P=0.01]; and 5-year OS rates were 47% vs 35%, respectively (HR, 0.764; 95% CI, 0.592-0.987; P=0.03]. CONCLUSION The incorporation of extensive upper abdominal procedures resulted in increased optimal cytoreduction rates and significantly improved PFS and OS. A paradigm shift toward more complete primary cytoreduction can improve survival for patients with advanced ovarian, tubal, and peritoneal carcinomas.


Journal of Clinical Oncology | 2010

Gene Expression Profile of BRCAness That Correlates With Responsiveness to Chemotherapy and With Outcome in Patients With Epithelial Ovarian Cancer

Panagiotis A. Konstantinopoulos; Dimitrios Spentzos; Beth Y. Karlan; Toshiyasu Taniguchi; Elena Fountzilas; Nancy Francoeur; Douglas A. Levine; Stephen A. Cannistra

PURPOSE To define a gene expression profile of BRCAness that correlates with chemotherapy response and outcome in epithelial ovarian cancer (EOC). METHODS A publicly available microarray data set including 61 patients with EOC with either sporadic disease or BRCA(1/2) germline mutations was used for development of the BRCAness profile. Correlation with platinum responsiveness was assessed in platinum-sensitive and platinum-resistant tumor biopsy specimens from six patients with BRCA germline mutations. Association with poly-ADP ribose polymerase (PARP) inhibitor responsiveness and with radiation-induced RAD51 foci formation (a surrogate of homologous recombination) was assessed in Capan-1 cell line clones. The BRCAness profile was validated in 70 patients enriched for sporadic disease to assess its association with outcome. RESULTS The BRCAness profile accurately predicted platinum responsiveness in eight out of 10 patient-derived tumor specimens, and between PARP-inhibitor sensitivity and resistance in four out of four Capan-1 clones. [corrected] When applied to the 70 patients with sporadic disease, patients with the BRCA-like (BL) profile had improved disease-free survival (34 months v 15 months; log-rank P = .013) and overall survival (72 months v 41 months; log-rank P = .006) compared with patients with a non-BRCA-like (NBL) profile, respectively. The BRCAness profile maintained independent prognostic value in multivariate analysis, which controlled for other known clinical prognostic factors. CONCLUSION The BRCAness profile correlates with responsiveness to platinum and PARP inhibitors and identifies a subset of sporadic patients with improved outcome. Additional evaluation of this profile as a predictive tool in patients with sporadic EOC is warranted.


JAMA | 2012

Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer

Kelly L. Bolton; Georgia Chenevix-Trench; Cindy Goh; Siegal Sadetzki; Susan J. Ramus; Beth Y. Karlan; Diether Lambrechts; Evelyn Despierre; Daniel Barrowdale; Lesley McGuffog; Sue Healey; Douglas F. Easton; Olga M. Sinilnikova; Javier Benitez; María J. García; Susan L. Neuhausen; Mitchell H. Gail; Patricia Hartge; Susan Peock; Debra Frost; D. Gareth Evans; Rosalind Eeles; Andrew K. Godwin; Mary B. Daly; Ava Kwong; Edmond S K Ma; Conxi Lázaro; Ignacio Blanco; Marco Montagna; Emma D'Andrea

CONTEXT Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear. OBJECTIVE To characterize the survival of BRCA carriers with EOC compared with noncarriers and to determine whether BRCA1 and BRCA2 carriers show similar survival patterns. DESIGN, SETTING, AND PARTICIPANTS A pooled analysis of 26 observational studies on the survival of women with ovarian cancer, which included data from 1213 EOC cases with pathogenic germline mutations in BRCA1 (n = 909) or BRCA2 (n = 304) and from 2666 noncarriers recruited and followed up at variable times between 1987 and 2010 (the median year of diagnosis was 1998). MAIN OUTCOME MEASURE Five-year overall mortality. RESULTS The 5-year overall survival was 36% (95% CI, 34%-38%) for noncarriers, 44% (95% CI, 40%-48%) for BRCA1 carriers, and 52% (95% CI, 46%-58%) for BRCA2 carriers. After adjusting for study and year of diagnosis, BRCA1 and BRCA2 mutation carriers showed a more favorable survival than noncarriers (for BRCA1: hazard ratio [HR], 0.78; 95% CI, 0.68-0.89; P < .001; and for BRCA2: HR, 0.61; 95% CI, 0.50-0.76; P < .001). These survival differences remained after additional adjustment for stage, grade, histology, and age at diagnosis (for BRCA1: HR, 0.73; 95% CI, 0.64-0.84; P < .001; and for BRCA2: HR, 0.49; 95% CI, 0.39-0.61; P < .001). The BRCA1 HR estimate was significantly different from the HR estimated in the adjusted model (P for heterogeneity = .003). CONCLUSION Among patients with invasive EOC, having a germline mutation in BRCA1 or BRCA2 was associated with improved 5-year overall survival. BRCA2 carriers had the best prognosis.


Nature Communications | 2013

Inferring tumour purity and stromal and immune cell admixture from expression data

Kosuke Yoshihara; Maria Shahmoradgoli; Emmanuel Martinez; Rahulsimham Vegesna; Hoon Kim; Wandaliz Torres-Garcia; Victor Trevino; Hui Shen; Peter W. Laird; Douglas A. Levine; Scott L. Carter; Gad Getz; Katherine Stemke-Hale; Gordon B. Mills; Roel G.W. Verhaak

Infiltrating stromal and immune cells form the major fraction of normal cells in tumour tissue and not only perturb the tumour signal in molecular studies but also have an important role in cancer biology. Here we describe ‘Estimation of STromal and Immune cells in MAlignant Tumours using Expression data’ (ESTIMATE)—a method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumour samples. ESTIMATE scores correlate with DNA copy number-based tumour purity across samples from 11 different tumour types, profiled on Agilent, Affymetrix platforms or based on RNA sequencing and available through The Cancer Genome Atlas. The prediction accuracy is further corroborated using 3,809 transcriptional profiles available elsewhere in the public domain. The ESTIMATE method allows consideration of tumour-associated normal cells in genomic and transcriptomic studies. An R-library is available on https://sourceforge.net/projects/estimateproject/.

Collaboration


Dive into the Douglas A. Levine's collaboration.

Top Co-Authors

Avatar

Richard R. Barakat

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nadeem R. Abu-Rustum

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dennis S. Chi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yukio Sonoda

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert A. Soslow

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Narciso Olvera

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mario M. Leitao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Fanny Dao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ginger J. Gardner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carol L. Brown

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge