Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas B. Stairs is active.

Publication


Featured researches published by Douglas B. Stairs.


Nature Genetics | 2009

SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas

Adam J. Bass; Hideo Watanabe; Craig H. Mermel; Yu Ss; Sven Perner; Roeland Verhaak; So Young Kim; Leslie Wardwell; Pablo Tamayo; Irit Gat-Viks; Alex H. Ramos; Michele S. Woo; Barbara A. Weir; Gad Getz; Rameen Beroukhim; Michael O'Kelly; Amit Dutt; Orit Rozenblatt-Rosen; Piotr Dziunycz; Justin Komisarof; Lucian R. Chirieac; Christopher J. Lafargue; Veit Scheble; Theresia Wilbertz; Changqing Ma; Shilpa Rao; Hiroshi Nakagawa; Douglas B. Stairs; Lin Lin; Thomas J. Giordano

Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development. Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations, is necessary for normal esophageal squamous development, promotes differentiation and proliferation of basal tracheal cells and cooperates in induction of pluripotent stem cells. SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.


Nature Cell Biology | 2007

Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis

Christopher J. Sarkisian; Blaine A. Keister; Douglas B. Stairs; Robert B. Boxer; Susan E. Moody; Lewis A. Chodosh

Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation — similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 — stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation — similar to those found in tumours bearing endogenous Kras2 mutations — induce cellular senescence that is Ink4a–Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53–Ink4a–Arf-dependent senescence checkpoints.


Cancer Cell | 2011

Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene.

Douglas B. Stairs; Lauren J. Bayne; Ben Rhoades; Maria E. Vega; Todd J. Waldron; Jiri Kalabis; Andres J. Klein-Szanto; Ju Seog Lee; Jonathan P. Katz; J. Alan Diehl; Albert B. Reynolds; Robert H. Vonderheide; Anil K. Rustgi

p120-catenin (p120ctn) interacts with E-cadherin, but to our knowledge, no formal proof that p120ctn functions as a bona fide tumor suppressor gene has emerged to date. We report herein that p120ctn loss leads to tumor development in mice. We have generated a conditional knockout model of p120ctn whereby mice develop preneoplastic and neoplastic lesions in the oral cavity, esophagus, and squamous forestomach. Tumor-derived cells secrete granulocyte macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-α (TNFα). The tumors contain significant desmoplasia and immune cell infiltration. Immature myeloid cells comprise a significant percentage of the immune cells present and likely participate in fostering a favorable tumor microenvironment, including the activation of fibroblasts.


Journal of Clinical Investigation | 2008

A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification

Jiri Kalabis; Kenji Oyama; Takaomi Okawa; Hiroshi Nakagawa; Carmen Z. Michaylira; Douglas B. Stairs; Jose-Luiz Figueiredo; Umar Mahmood; J. Alan Diehl; Meenhard Herlyn; Anil K. Rustgi

The esophageal epithelium is a prototypical stratified squamous epithelium that exhibits an exquisite equilibrium between proliferation and differentiation. After basal cells proliferate, they migrate outward toward the luminal surface, undergo differentiation, and eventually slough due to apoptosis. The identification and characterization of stem cells responsible for the maintenance of the esophageal epithelium remains elusive. Here, we employed Hoechst dye extrusion and BrdU label-retaining assays to identify in mice a potential esophageal stem cell population that localizes to the basal cell compartment. The self-renewing capacity of this population was characterized using a clonogenic assay and a 3D organotypic culture model. The putative esophageal stem cells were also capable of epithelial reconstitution in vivo in direct esophageal epithelial injury models. In both the 3D organotypic culture and direct mucosal injury models, the putative stem cells gave rise to undifferentiated and differentiated cells. These studies therefore provide a basis for understanding the regenerative capacity and biology of the esophageal epithelium when it is faced with injurious insults.


Cancer Research | 2010

Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors.

Shinya Ohashi; Mitsuteru Natsuizaka; Gabrielle S. Wong; Carmen Z. Michaylira; Katharine D. Grugan; Douglas B. Stairs; Jiri Kalabis; Maria E. Vega; Ross A. Kalman; Momo Nakagawa; Andres J. Klein-Szanto; Meenhard Herlyn; Diehl Ja; Anil K. Rustgi; Hiroshi Nakagawa

Transforming growth factor-beta (TGF-beta) is a potent inducer of epithelial to mesenchymal transition (EMT). However, it remains elusive about which molecular mechanisms determine the cellular capacity to undergo EMT in response to TGF-beta. We have found that both epidermal growth factor receptor (EGFR) overexpression and mutant p53 tumor suppressor genes contribute to the enrichment of an EMT-competent cellular subpopulation among telomerase-immortalized human esophageal epithelial cells during malignant transformation. EGFR overexpression triggers oncogene-induced senescence, accompanied by the induction of cyclin-dependent kinase inhibitors p15(INK4B), p16(INK4A), and p21. Interestingly, a subpopulation of cells emerges by negating senescence without loss of EGFR overexpression. Such cell populations express increased levels of zinc finger E-box binding (ZEB) transcription factors ZEB1 and ZEB2, and undergo EMT on TGF-beta stimulation. Enrichment of EMT-competent cells was more evident in the presence of p53 mutation, which diminished EGFR-induced senescence. RNA interference directed against ZEB resulted in the induction of p15(INK4B) and p16(INK4A), reactivating the EGFR-dependent senescence program. Importantly, TGF-beta-mediated EMT did not take place when cellular senescence programs were activated by either ZEB knockdown or the activation of wild-type p53 function. Thus, senescence checkpoint functions activated by EGFR and p53 may be evaded through the induction of ZEB, thereby allowing the expansion of an EMT-competent unique cellular subpopulation, providing novel mechanistic insights into the role of ZEB in esophageal carcinogenesis.


PLOS ONE | 2008

Cdx1 and c-Myc Foster the Initiation of Transdifferentiation of the Normal Esophageal Squamous Epithelium toward Barrett's Esophagus

Douglas B. Stairs; Hiroshi Nakagawa; Andres J. Klein-Szanto; Shukriyyah Mitchell; Debra G. Silberg; John W. Tobias; John P. Lynch; Anil K. Rustgi

Background Barretts esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD). Despite this well-defined epidemiologic association between acid reflux and Barretts esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined. Methodology/Principal Findings To begin to identify the genetic changes responsible for transdifferentiaiton in Barretts esophagus, we performed a microarray analysis of normal esophageal, Barretts esophagus and small intestinal biopsy specimens to identify candidate signaling pathways and transcription factors that may be involved. Through this screen we identified the Cdx1 homeodomain transcription factor and the c-myc pathway as possible candidates. Cdx1 and c-myc were then tested for their ability to induce transdifferentiation in immortalized human esophageal keratinocytes using organotypic culturing methods. Analyses of these cultures reveal that c-myc and cdx1 cooperate to induce mucin production and changes in keratin expression that are observed in the epithelium of Barretts esophagus. Conclusions/Significance These data demonstrate the ability of Cdx1 and c-myc to initiate the earliest stages of transdifferentiation of esophageal keratinocytes toward a cell fate characteristic of Barretts esophagus.


Genes & Development | 2012

Autocrine prolactin induced by the Pten–Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways

Chien-Chung Chen; Douglas B. Stairs; Robert B. Boxer; George K. Belka; Nelson D. Horseman; James V. Alvarez; Lewis A. Chodosh

Extrapituitary prolactin (Prl) is produced in humans and rodents; however, little is known about its in vivo regulation or physiological function. We now report that autocrine prolactin is required for terminal mammary epithelial differentiation during pregnancy and that its production is regulated by the Pten-PI3K-Akt pathway. Conditional activation of the PI3K-Akt pathway in the mammary glands of virgin mice by either Akt1 expression or Pten deletion rapidly induced terminal mammary epithelial differentiation accompanied by the synthesis of milk despite the absence of lobuloalveolar development. Surprisingly, we found that mammary differentiation was due to the PI3K-Akt-dependent synthesis and secretion of autocrine prolactin and downstream activation of the prolactin receptor (Prlr)-Jak-Stat5 pathway. Consistent with this, Akt-induced mammary differentiation was abrogated in Prl(-/-), Prlr(-/-), and Stat5(-/-) mice. Furthermore, cells treated with conditioned medium from mammary glands in which Akt had been activated underwent rapid Stat5 phosphorylation in a manner that was blocked by inhibition of Jak2, treatment with an anti-Prl antibody, or deletion of the prolactin gene. Demonstrating a physiological requirement for autocrine prolactin, mammary glands from lactation-defective Akt1(-/-);Akt2(+/-) mice failed to express autocrine prolactin or activate Stat5 during late pregnancy despite normal levels of circulating serum prolactin and pituitary prolactin production. Our findings reveal that PI3K-Akt pathway activation is necessary and sufficient to induce autocrine prolactin production in the mammary gland, Stat5 activation, and terminal mammary epithelial differentiation, even in the absence of the normal developmental program that prepares the mammary gland for lactation. Together, these findings identify a function for autocrine prolactin during normal development and demonstrate its endogenous regulation by the PI3K-Akt pathway.


Progress in Molecular Biology and Translational Science | 2010

Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia.

Douglas B. Stairs; Jianping Kong; John P. Lynch

Intestinal metaplasia (IM) is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric IM and Barretts esophagus (BE). In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intestinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric IM as well as in BE. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric IM and BE.


Breast Cancer Research | 2010

Akt is required for Stat5 activation and mammary differentiation.

Chien-Chung Chen; Robert B. Boxer; Douglas B. Stairs; Carla P. Portocarrero; Rachel H Horton; James V. Alvarez; Morris J. Birnbaum; Lewis A. Chodosh

IntroductionThe Akt pathway plays a central role in regulating cell survival, proliferation and metabolism, and is one of the most commonly activated pathways in human cancer. A role for Akt in epithelial differentiation, however, has not been established. We previously reported that mice lacking Akt1, but not Akt2, exhibit a pronounced metabolic defect during late pregnancy and lactation that results from a failure to upregulate Glut1 as well as several lipid synthetic enzymes. Despite this metabolic defect, however, both Akt1-deficient and Akt2-deficient mice exhibit normal mammary epithelial differentiation and Stat5 activation.MethodsIn light of the overlapping functions of Akt family members, we considered the possibility that Akt may play an essential role in regulating mammary epithelial development that is not evident in Akt1-deficient mice due to compensation by other Akt isoforms. To address this possibility, we interbred mice bearing targeted deletions in Akt1 and Akt2 and determined the effect on mammary differentiation during pregnancy and lactation.ResultsDeletion of one allele of Akt2 in Akt1-deficient mice resulted in a severe defect in Stat5 activation during late pregnancy that was accompanied by a global failure of terminal mammary epithelial cell differentiation, as manifested by the near-complete loss in production of the three principal components of milk: lactose, lipid, and milk proteins. This defect was due, in part, to a failure of pregnant Akt1-/- ;Akt2+/- mice to upregulate the positive regulator of Prlr-Jak-Stat5 signaling, Id2, or to downregulate the negative regulators of Prlr-Jak-Stat5 signaling, caveolin-1 and Socs2.ConclusionsOur findings demonstrate an unexpected requirement for Akt in Prlr-Jak-Stat5 signaling and establish Akt as an essential central regulator of mammary epithelial differentiation and lactation.


Cancer Biology & Therapy | 2007

IGFBP-3 regulates esophageal tumor growth through IGF-dependent and independent mechanisms

Munenori Takaoka; Seok-Hyun Kim; Takaomi Okawa; Carmen Z. Michaylira; Douglas B. Stairs; Cameron N. Johnstone; Claudia D. Andl; Ben Rhoades; James J. Lee; Andres J. Klein-Szanto; Wafik S. El-Deiry; Hiroshi Nakagawa

Insulin-like growth factor binding protein (IGFBP)-3 exerts either proapoptotic or growth stimulatory effects depending upon the cellular context. IGFBP-3 is overexpressed frequently in esophageal cancer. Yet, the role of IGFBP-3 in esophageal tumor biology remains elusive. To delineate the functional consequences of IGFBP-3 overexpression, we stably transduced Ha-RasV12-transformed human esophageal cells with either wild-type or mutant IGFBP-3, the latter incapable of binding Insulin-like growth factor (IGFs) as a result of substitution of amino-terminal Ile56, Leu80, and Leu81 residues with Glycine residues. Wild-type, but not mutant, IGFBP-3 prevented IGF-I from activating the IGF-1 receptor and AKT, and suppressed anchorage-independent cell growth. When xenografted in nude mice, in vivo bioluminescence imaging demonstrated that wild-type, but not mutant IGFBP-3, abrogated tumor formation by the Ras-transformed cells with concurrent induction of apoptosis, implying a prosurvival effect of IGF in cancer cell adaptation to the microenvironment. Moreover, there was more aggressive tumor growth by mutant IGFBP-3 overexpressing cells than control cell tumors, without detectable caspase-3 cleavage in tumor tissues, indicating an IGF-independent growth stimulatory effect of mutant IGFBP-3. In aggregate, these data suggest that IGFBP-3 contributes to esophageal tumor development and progression through IGF-dependent and independent mechanisms.

Collaboration


Dive into the Douglas B. Stairs's collaboration.

Top Co-Authors

Avatar

Hiroshi Nakagawa

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil K. Rustgi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jiri Kalabis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Heather L. Lehman

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lewis A. Chodosh

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Z. Michaylira

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John P. Lynch

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jonathan P. Katz

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge