Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas B. Young is active.

Publication


Featured researches published by Douglas B. Young.


Nature Reviews Microbiology | 2009

The spectrum of latent tuberculosis: rethinking the biology and intervention strategies

Clifton E. Barry; Helena I. Boshoff; Véronique Dartois; Thomas Dick; Sabine Ehrt; JoAnne L. Flynn; Dirk Schnappinger; Robert J. Wilkinson; Douglas B. Young

Immunological tests provide evidence of latent tuberculosis in one third of the global population, which corresponds to more than two billion individuals. Latent tuberculosis is defined by the absence of clinical symptoms but carries a risk of subsequent progression to clinical disease, particularly in the context of co-infection with HIV. In this Review we discuss the biology of latent tuberculosis as part of a broad range of responses that occur following infection with Mycobacterium tuberculosis, which result in the formation of physiologically distinct granulomatous lesions that provide microenvironments with differential ability to support or suppress the persistence of viable bacteria. We then show how this model can be used to develop a rational programme to discover effective drugs for the eradication of M. tuberculosis infection.


Immunology Today | 1991

Autoimmunity, microbial immunity and the immunological homunculus

Irun R. Cohen; Douglas B. Young

Clonal deletion and anergy are believed by many immunologists to be the fundamental mechanisms responsible for self tolerance. Nevertheless, as Irun Cohen and Douglas Young point out, such notions of nonreactivity cannot explain certain key features of immune behaviour: the immunological dominance of microbial antigens that mimic self, the uniformity of autoimmune diseases and the prevalence of natural autoimmunity among the healthy. The theory of the immunological homunculus is presented here as a unifying principle.


Nature Genetics | 2013

Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans

Iñaki Comas; Mireia Coscolla; Tao Luo; Sonia Borrell; Kathryn E. Holt; Midori Kato-Maeda; Julian Parkhill; Bijaya Malla; Stefan Berg; Guy Thwaites; Dorothy Yeboah-Manu; Graham Bothamley; Jian Mei; Lanhai Wei; Stephen D. Bentley; Simon R. Harris; Stefan Niemann; Roland Diel; Abraham Aseffa; Qian Gao; Douglas B. Young; Sebastien Gagneux

Tuberculosis caused 20% of all human deaths in the Western world between the seventeenth and nineteenth centuries and remains a cause of high mortality in developing countries. In analogy to other crowd diseases, the origin of human tuberculosis has been associated with the Neolithic Demographic Transition, but recent studies point to a much earlier origin. We analyzed the whole genomes of 259 M. tuberculosis complex (MTBC) strains and used this data set to characterize global diversity and to reconstruct the evolutionary history of this pathogen. Coalescent analyses indicate that MTBC emerged about 70,000 years ago, accompanied migrations of anatomically modern humans out of Africa and expanded as a consequence of increases in human population density during the Neolithic period. This long coevolutionary history is consistent with MTBC displaying characteristics indicative of adaptation to both low and high host densities.


Nature Reviews Microbiology | 2003

Tuberculosis: a problem with persistence

Graham R. Stewart; Brian D. Robertson; Douglas B. Young

Mycobacterium tuberculosis is one of most successful pathogens of mankind, infecting one-third of the global population and claiming two million lives every year. The ability of the bacteria to persist in the form of a long-term asymptomatic infection, referred to as latent tuberculosis, is central to the biology of the disease. The persistence of bacteria in superficially normal tissue was recognized soon after the discovery of the tubercle bacillus, and much of our knowledge about persistent populations of M. tuberculosis dates back to the first half of the last century. Recent advances in microbial genetics and host immunity provide an opportunity for renewed investigation of this persistent threat to human health.


Microbiology | 2002

Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays

Graham R. Stewart; Lorenz Wernisch; Richard A. Stabler; Joseph A. Mangan; Jason Hinds; Ken Laing; Douglas B. Young; Philip D. Butcher

Regulation of the expression of heat-shock proteins plays an important role in the pathogenesis of Mycobacterium tuberculosis. The heat-shock response of bacteria involves genome-wide changes in gene expression. A combination of targeted mutagenesis and whole-genome expression profiling was used to characterize transcription factors responsible for control of genes encoding the major heat-shock proteins of M. tuberculosis. Two heat-shock regulons were identified. HspR acts as a transcriptional repressor for the members of the Hsp70 (DnaK) regulon, and HrcA similarly regulates the Hsp60 (GroE) response. These two specific repressor circuits overlap with broader transcriptional changes mediated by alternative sigma factors during exposure to high temperatures. Several previously undescribed heat-shock genes were identified as members of the HspR and HrcA regulons. A novel HspR-controlled operon encodes a member of the low-molecular-mass alpha-crystallin family. This protein is one of the most prominent features of the M. tuberculosis heat-shock response and is related to a major antigen induced in response to anaerobic stress.


Journal of Immunology | 2003

The 19-kDa Mycobacterium tuberculosis Protein Induces Macrophage Apoptosis Through Toll-Like Receptor-2

Martin Lopez; Laura M. Sly; Yvonne Luu; Douglas B. Young; Howard M. Cooper; Neil E. Reiner

Macrophages infected with Mycobacterium tuberculosis undergo increased rates of apoptosis. Important objectives are to define the microbial factors that cause apoptosis, the mechanisms involved and the impact on infection. The 19-kDa M. tuberculosis glycolipoprotein (p19) is both cell wall-associated and secreted and is a candidate virulence factor. We investigated the potential of recombinant, His-tagged p19 lacking the secretion/acylation signal to induce macrophage apoptosis. The TUNEL assay and annexin V binding to membrane phosphatidylserine were used to measure apoptosis. The results show that p19 does act to induce apoptosis in differentiated THP-1 cells and monocyte-derived macrophages and that this effect is both dose- and time-dependent. Furthermore, this effect of p19 is Toll-like receptor (TLR)-2-mediated because preincubation of either THP-1 cells or TLR-2-expressing CHO cells with anti-TLR-2 mAb inhibited apoptosis induced by p19. Apoptosis of macrophages in response to p19 was found to be caspase-8 dependent and caspase-9 independent consistent with a transmembrane pathway signaling cell death through TLR-2. The viability of M. tuberculosis in cells undergoing apoptosis induced by p19 was significantly reduced suggesting the possibility that this may favor containment of infection. Although native p19 is a mycobacterial glycolipoprotein, based upon the use of recombinant p19 where the acylation signal had been removed, we conclude that it is the polypeptide component of p19 that is responsible for signaling through TLR-2 and that the lipid moiety is not required.


Molecular Microbiology | 1992

Mycobacterial protein antigens: a compilation

Douglas B. Young; Stefan H. E. Kaufmann; P. W. M. Hermans; J. E. R. Thole

In response to recommendations from the Steering Committees responsible for co‐ordination of World Health Organization programmes for research on the immunology of leprosy (IMMLEP) and tuberculosis (IMMTUB), a list was prepared summarizing the properties of mycobacterial proteins currently under investigation with respect to their immunological activities. After consultation with more than 40 laboratories world‐wide this list was extended to form the compilation shown below and is intended to provide a comprehensive and convenient reference for future studies in this field.


Microbiology | 2000

Three pathways for trehalose biosynthesis in mycobacteria

Koen A. L. De Smet; Anthony Weston; Ivor N. Brown; Douglas B. Young; Brian D. Robertson

Trehalose is present as a free disaccharide in the cytoplasm of mycobacteria and as a component of cell-wall glycolipids implicated in tissue damage associated with mycobacterial infection. To obtain an overview of trehalose metabolism, we analysed data from the Mycobacterium tuberculosis genome project and identified ORFs with homology to genes encoding enzymes from three trehalose biosynthesis pathways previously characterized in other bacteria. Functional assays using mycobacterial extracts and recombinant enzymes derived from these ORFs demonstrated that mycobacteria can produce trehalose from glucose 6-phosphate and UDP-glucose (the OtsA-OtsB pathway) from glycogen-like alpha(1-->4)-linked glucose polymers (the TreY-TreZ pathway) and from maltose (the TreS pathway). Each of the pathways was found to be active in both rapid-growing Mycobacterium smegmatis and slow-growing Mycobacterium bovis BCG. The presence of a disrupted treZ gene in Mycobacterium leprae suggests that this pathway is not functional in this organism. The presence of multiple biosynthetic pathways indicates that trehalose plays an important role in mycobacterial physiology.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment

Anna K. Coussens; Robert J. Wilkinson; Yasmeen Hanifa; Vladyslav Nikolayevskyy; Paul T. Elkington; Kamrul Islam; Peter Timms; Timothy R Venton; Graham Bothamley; Geoffrey E. Packe; Mathina Darmalingam; Robert N. Davidson; Heather Milburn; Lucy V. Baker; Richard D. Barker; Charles A. Mein; Leena Bhaw-Rosun; Rosamond Nuamah; Douglas B. Young; Francis Drobniewski; Chris Griffiths; Adrian R. Martineau

Calcidiol, the major circulating metabolite of vitamin D, supports induction of pleiotropic antimicrobial responses in vitro. Vitamin D supplementation elevates circulating calcidiol concentrations, and thus has a potential role in the prevention and treatment of infection. The immunomodulatory effects of administering vitamin D to humans with an infectious disease have not previously been reported. To characterize these effects, we conducted a detailed longitudinal study of circulating and antigen-stimulated immune responses in ninety-five patients receiving antimicrobial therapy for pulmonary tuberculosis who were randomized to receive adjunctive high-dose vitamin D or placebo in a clinical trial, and who fulfilled criteria for per-protocol analysis. Vitamin D supplementation accelerated sputum smear conversion and enhanced treatment-induced resolution of lymphopaenia, monocytosis, hypercytokinaemia, and hyperchemokinaemia. Administration of vitamin D also suppressed antigen-stimulated proinflammatory cytokine responses, but attenuated the suppressive effect of antimicrobial therapy on antigen-stimulated secretion of IL-4, CC chemokine ligand 5, and IFN-α. We demonstrate a previously unappreciated role for vitamin D supplementation in accelerating resolution of inflammatory responses during tuberculosis treatment. Our findings suggest a potential role for adjunctive vitamin D supplementation in the treatment of pulmonary infections to accelerate resolution of inflammatory responses associated with increased risk of mortality.


Nature | 2014

Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis

Kirsten I. Bos; Kelly M. Harkins; Alexander Herbig; Mireia Coscolla; Nico Weber; Iñaki Comas; Stephen Forrest; Josephine M. Bryant; Simon R. Harris; Verena J. Schuenemann; Tessa J. Campbell; Kerttu Majander; Alicia K. Wilbur; Ricardo A. Guichón; Dawnie Wolfe Steadman; Della Collins Cook; Stefan Niemann; Marcel A. Behr; Martin Zumarraga; Ricardo Bastida; Daniel H. Huson; Kay Nieselt; Douglas B. Young; Julian Parkhill; Jane E. Buikstra; Sebastien Gagneux; Anne C. Stone; Johannes Krause

Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean.

Collaboration


Dive into the Douglas B. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zhang

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iñaki Comas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Martin Vordermeier

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar

Rea Tschopp

Swiss Tropical and Public Health Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge