Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas D. Leipold is active.

Publication


Featured researches published by Douglas D. Leipold.


Nature Biotechnology | 2008

Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index

Jagath R. Junutula; Helga Raab; Suzanna Clark; Sunil Bhakta; Douglas D. Leipold; Sylvia Weir; Yvonne Chen; Michelle Simpson; Siao Ping Tsai; Mark S. Dennis; Yanmei Lu; Y. Gloria Meng; Carl Ng; Jihong Yang; Chien C Lee; Eileen T. Duenas; Jeffrey Gorrell; Viswanatham Katta; Amy Kim; Kevin McDorman; Kelly Flagella; Rayna Venook; Sarajane Ross; Susan D. Spencer; Wai Lee Wong; Henry B. Lowman; Richard Vandlen; Mark X. Sliwkowski; Richard H. Scheller; Paul Polakis

Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display–based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.


Analytical Biochemistry | 2011

Characterization of intact antibody–drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography–mass spectrometry

Keyang Xu; Luna Liu; Ola Saad; Jakub Baudys; Lara Williams; Douglas D. Leipold; Ben Shen; Helga Raab; Jagath R. Junutula; Amy Kim; Surinder Kaur

Antibody-drug conjugates (ADCs) are designed to facilitate the targeted delivery of cytotoxic drugs to improve their tumor fighting effects and minimize systemic toxicity. However, efficacy and safety can potentially be compromised due to the release of conjugated drugs from the ADC with time while in circulation, resulting in changes in the drug-to-antibody ratio (DAR). Current understanding of this process is limited because existing methods such as immunoassays fail to distinguish ADCs with different DARs. Here we demonstrate a novel method with bead-based affinity capture and capillary liquid chromatography-mass spectrometry to allow direct measurement of drug release by quantifying DAR distributions of the ADC in plasma/serum. This method successfully identified individual intact conjugated antibody species produced due to drug loss from ADCs (e.g., an engineered site-specific anti-MUC16 THIOMAB-drug conjugate) and measured the corresponding DAR distributions in vitro and in vivo. Information obtained can provide insights into the mechanisms involved in drug loss and help to optimize ADC therapeutics. Other potential applications of the method may include characterization of posttranslational modifications, protein adducts, and immunogenicity.


Molecular Cancer Therapeutics | 2012

The Effect of Different Linkers on Target Cell Catabolism and Pharmacokinetics/Pharmacodynamics of Trastuzumab Maytansinoid Conjugates

Hans K. Erickson; Gail Lewis Phillips; Douglas D. Leipold; Carmela Provenzano; Elaine Mai; Holly Johnson; Bert Gunter; Charlene Audette; Manish Gupta; Jan Pinkas; Jay Tibbitts

Trastuzumab emtansine (T-DM1) is an antibody–drug conjugate consisting of the anti-HER2 antibody trastuzumab linked via a nonreducible thioether linker to the maytansinoid antitubulin agent DM1. T-DM1 has shown favorable safety and efficacy in patients with HER2-positive metastatic breast cancer. In previous animal studies, T-DM1 exhibited better pharmacokinetics (PK) and slightly more efficacy than several disulfide-linked versions. The efficacy findings are unique, as other disulfide-linked antibody–drug conjugates (ADC) have shown greater efficacy than thioether-linked designs. To explore this further, the in vitro and in vivo activity, PK, and target cell activation of T-DM1 and the disulfide-linked T-SPP-DM1 were examined. Both ADCs showed high in vitro potency, with T-DM1 displaying greater potency in two of four breast cancer cell lines. In vitro target cell processing of T-DM1 and T-SPP-DM1 produced lysine-Nϵ-MCC-DM1, and lysine-Nϵ-SPP-DM1 and DM1, respectively; in vivo studies confirmed these results. The in vitro processing rates for the two conjugate to their respective catabolites were similar. In vivo, the potencies of the conjugates were similar, and T-SPP-DM1 had a faster plasma clearance than T-DM1. Slower T-DM1 clearance translated to higher overall tumor concentrations (conjugate plus catabolites), but unexpectedly, similar levels of tumor catabolite. These results indicate that, although the ADC linker can have clear impact on the PK and the chemical nature of the catabolites formed, both linkers seem to offer the same payload delivery to the tumor. Mol Cancer Ther; 11(5); 1133–42. ©2012 AACR.


Journal of Pharmacokinetics and Pharmacodynamics | 2010

Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice

Nelson L. Jumbe; Yan Xin; Douglas D. Leipold; Lisa Crocker; Debra L. Dugger; Elaine Mai; Mark X. Sliwkowski; Paul J. Fielder; Jay Tibbitts

Trastuzumab-DM1 (T-DM1) is a novel antibody–drug conjugate under investigation for the treatment of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. One challenge in oncologic drug development is determining the optimal dose and treatment schedule. A novel dose regimen-finding strategy was developed for T-DM1 using experimental data and pharmacokinetic/pharmacodynamic modeling. To characterize the disposition of T-DM1, pharmacokinetic studies were conducted in athymic nude and beige nude mice. The pharmacokinetics of T-DM1 were described well by a two-compartment model. Tumor response data were obtained from single-dose, multiple-dose and time–dose-fractionation studies of T-DM1 in animal models of HER2-positive breast cancer, specifically engineered to be insensitive to trastuzumab. A sequential population-based pharmacokinetic/pharmacodynamic modeling approach was developed to describe the anti-tumor activity of T-DM1. A cell-cycle-phase nonspecific tumor cell kill model incorporating transit compartments captured well the features of tumor growth and the activity of T-DM1. Key findings of the model were that tumor cell growth rate played a significant role in the sensitivity of tumors to T-DM1; anti-tumor activity was schedule independent; and tumor response was linked to the ratio of exposure to a concentration required for tumor stasis.


Journal of Medicinal Chemistry | 2014

Site-Specific Trastuzumab Maytansinoid Antibody–Drug Conjugates with Improved Therapeutic Activity through Linker and Antibody Engineering

Thomas H. Pillow; Janet Tien; Kathryn Parsons-Reponte; Sunil Bhakta; Hao Li; Leanna Staben; Guangmin Li; Josefa Chuh; Aimee Fourie-O’Donohue; Martine Darwish; Victor Yip; Luna Liu; Douglas D. Leipold; Dian Su; Elmer Wu; Susan D. Spencer; Ben-Quan Shen; Keyang Xu; Katherine R. Kozak; Helga Raab; Richard Vandlen; Gail Lewis Phillips; Richard H. Scheller; Paul Polakis; Mark X. Sliwkowski; John A. Flygare; Jagath R. Junutula

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Bioanalysis | 2013

Immunogenicity assays for antibody–drug conjugates: case study with ado-trastuzumab emtansine

Montserrat Carrasco-Triguero; Joo-Hee Yi; Randall Dere; Zhihua Julia Qiu; Corinna Lei; Yanhong Li; Connie Mahood; Bei Wang; Douglas D. Leipold; Kirsten Achilles Poon; Surinder Kaur

BACKGROUND Antibody-drug conjugates (ADCs) such as Kadcyla™ (ado-trastuzumab emtansine [T-DM1]) present covalently bound cytotoxic drugs, which may influence their immunogenicity potential compared with antibody therapies. Therefore, ADCs require assay strategies that allow measurement of responses to all the molecular components. RESULTS The immunogenicity strategy for T-DM1 used a risk-based, tiered approach that included screening and titration to detect antitherapeutic antibodies; confirmation of positive responses; and characterization to assess whether the immune response is primarily to the antibody or to the linker-drug and/or new epitopes in trastuzumab resulting from conjugation. CONCLUSION The tiered immunogenicity assay strategy for T-DM1 allowed detection of antitherapeutic antibodies to all components of the ADC in multiple nonclinical and clinical studies. Characterization strategies implemented in clinical studies provided additional insights into the specificity of the immune response.


Cancer Chemotherapy and Pharmacology | 2014

Mechanistic pharmacokinetic/pharmacodynamic modeling of in vivo tumor uptake, catabolism, and tumor response of trastuzumab maytansinoid conjugates

Russ Wada; Hans Erickson; Gail Lewis Phillips; Carmela Provenzano; Douglas D. Leipold; Elaine Mai; Holly Johnson; Jay Tibbitts

PurposeTrastuzumab emtansine (T-DM1), an antibody–drug conjugate (ADC) comprised of trastuzumab linked to the antimitotic agent DM1, has shown promising results in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Investigations of the mechanisms of the action of ADCs, including T-DM1, have been primarily descriptive or semiquantitative. However, quantitative pharmacokinetic/pharmacodynamic (PK/PD) analysis may provide insights into their complex behavior. The analyses described herein applied PK/PD modeling to nonclinical studies of maytansinoid conjugates.MethodsThe maytansinoid conjugates T-DM1 and T-SPP-DM1, with thioether and disulfide linkers, respectively, were tested in mouse efficacy, PK, and tumor uptake studies. 3[H]DM1-bearing ADCs were used to facilitate the quantitation of the ADCs in plasma, as well as ADC and ADC catabolites in tumors. Three mechanistic PK/PD models were used to characterize plasma ADC, tumor ADC, and tumor catabolite concentrations. Tumor catabolite concentrations were used to fit tumor response. Model parameters were estimated using R software and nonlinear least squares regression.ResultsPlasma ADC-associated DM1 concentrations of T-DM1 decreased more slowly than those of T-SPP-DM1, likely due to slower DM1 release. A comparison of the mechanistic models found that the best model allowed catabolism and catabolite exit rates to differ between ADCs, that T-DM1 exhibited both faster tumor catabolism and catabolite exit rate from tumors than T-SPP-DM1; findings inconsistent with expected behavior based on the physicochemical nature of the respective catabolites. Tumor catabolite concentrations adequately described tumor response with both ADCs showing similar potency.ConclusionMechanistic PK/PD studies described herein provided results that confirmed and challenged current hypotheses, and suggested new areas of investigation.


mAbs | 2013

American Association of Pharmaceutical Scientists National Biotechnology Conference Short Course: Translational Challenges in Developing Antibody-Drug Conjugates: May 24, 2012, San Diego, CA

Karen Thudium; Sanela Bilic; Douglas D. Leipold; William Mallet; Surinder Kaur; Bernd Meibohm; Hans K. Erickson; Jay Tibbitts; Hong Vicky Zhao; Manish Gupta

The American Association of Pharmaceutical Scientists (AAPS) National Biotechnology Conference Short Course “Translational Challenges in Developing Antibody-Drug Conjugates (ADCs),” held May 24, 2012 in San Diego, CA, was organized by members of the Pharmacokinetics, Pharmacodynamics and Drug Metabolism section of AAPS. Representatives from the pharmaceutical industry, regulatory authorities, and academia in the US and Europe attended this short course to discuss the translational challenges in ADC development and the importance of characterizing these molecules early in development to achieve therapeutic utility in patients. Other areas of discussion included selection of target antigens; characterization of absorption, distribution, metabolism, and excretion; assay development and hot topics like regulatory perspectives and the role of pharmacometrics in ADC development. MUC16-targeted ADCs were discussed to illustrate challenges in preclinical development; experiences with trastuzumab emtansine (T-DM1; Genentech) and the recently approved brentuximab vedotin (Adcetris®; Seattle Genetics) were presented in depth to demonstrate considerations in clinical development. The views expressed in this report are those of the participants and do not necessarily represent those of their affiliations.


Molecular Cancer Therapeutics | 2017

Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers

Thomas H. Pillow; Melissa Schutten; Shang-Fan Yu; Rachana Ohri; Jack Sadowsky; Kirsten Achilles Poon; Willy Solis; Fiona Zhong; Geoffrey Del Rosario; Mary Ann T. Go; Jeffrey Lau; Sharon Yee; Jintang He; Luna Liu; Carl Ng; Keyang Xu; Douglas D. Leipold; Amrita V. Kamath; Donglu Zhang; Luke Masterson; Stephen J. Gregson; Philip W. Howard; Fan Fang; Jinhua Chen; Janet Gunzner-Toste; Katherine K. Kozak; Susan D. Spencer; Paul Polakis; Andrew G. Polson; John A. Flygare

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody–drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871–8. ©2017 AACR.


Bioconjugate Chemistry | 2017

Attachment Site Cysteine Thiol pKa Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody–Drug Conjugates

Breanna S. Vollmar; Binqing Wei; Rachana Ohri; Jianhui Zhou; Jintang He; Shang-Fan Yu; Douglas D. Leipold; Ely Cosino; Sharon Yee; Aimee Fourie-O’Donohue; Guangmin Li; Gail Lewis Phillips; Katherine R. Kozak; Amrita Kamath; Keyang Xu; Genee Lee; Greg A. Lazar; Hans K. Erickson

The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.

Collaboration


Dive into the Douglas D. Leipold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge