Douglas E. Betts
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas E. Betts.
Science | 1996
James B. McClain; Douglas E. Betts; Dorian A. Canelas; Edward T. Samulski; Joseph M. DeSimone; J. D. Londono; H. D. Cochran; G. D. Wignall; D. Chillura-Martino; R. Triolo
Interfacially active block copolymer amphiphiles have been synthesized and their self-assembly into micelles in supercritical carbon dioxide (CO2) has been demonstrated with small-angle neutron scattering (SANS). These materials establish the design criteria for molecularly engineered surfactants that can stabilize and disperse otherwise insoluble matter into a CO2 continuous phase. Polystyrene-b-poly(1,1-dihydroperfluorooctyl acrylate) copolymers self-assembled into polydisperse core-shell-type micelles as a result of the disparate solubility characteristics of the different block segments in CO2. These nonionic surfactants for CO2 were shown by SANS to be capable of emulsifying up to 20 percent by weight of a CO2-insoluble hydrocarbon into CO2. This result demonstrates the efficacy of surfactant-modified CO2 in reducing the large volumes of organic and halogenated solvent waste streams released into our environment by solvent-intensive manufacturing and process industries.
Nature Materials | 2010
Eric Brown; Nicole A. Forman; Carlos S. Orellana; Hanjun Zhang; Benjamin W. Maynor; Douglas E. Betts; Joseph M. DeSimone; Heinrich M. Jaeger
Suspensions are of wide interest and form the basis for many smart fluids. For most suspensions, the viscosity decreases with increasing shear rate, that is, they shear thin. Few are reported to do the opposite, that is, shear thicken, despite the longstanding expectation that shear thickening is a generic type of suspension behaviour. Here we resolve this apparent contradiction. We demonstrate that shear thickening can be masked by a yield stress and can be recovered when the yield stress is decreased below a threshold. We show the generality of this argument and quantify the threshold in rheology experiments where we control yield stresses arising from a variety of sources, such as attractions from particle surface interactions, induced dipoles from applied electric and magnetic fields, as well as confinement of hard particles at high packing fractions. These findings open up possibilities for the design of smart suspensions that combine shear thickening with electro- or magnetorheological response.
Journal of the American Chemical Society | 2008
Zhaokang Hu; Liang Chen; Douglas E. Betts; Ashish A. Pandya; Marc A. Hillmyer; Joseph M. DeSimone
Amphiphilic networks of perfluoropolyethers (PFPE) and poly(ethylene glycol) (PEG) have been achieved to yield optically transparent, mechanically robust films over a wide range of compositions. Telechelic diols of these oligomers were transformed to a photocurable dimethacryloxy form (DMA) and free radically cured at various composition weight ratios to yield free-standing films. Clear and colorless amphiphilic networks could be achieved when low molar mass versions of both the PFPE-DMA (1 kg/mol) and the PEG-DMA (550 g/mol) were used. The bulk morphologies of the samples were extensively characterized by a variety of techniques including ultraviolet-visible spectroscopy, differential scanning calorimetry, dynamic mechanic thermal analysis, small-angle X-ray scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and optical microscopy, which strongly suggest that nanoscopic to macroscopic phase-separated materials could be achieved. By incorporating a threshold amount of PFPEs into PEG-based hydrogel networks, water swelling could be significantly reduced, which may offer a new strategy for a number of medical device applications. Along these lines, strong inhibition of nonspecific protein adsorption could be achieved with these amphiphilic network materials compared with an oligo(ethylene glycol)-based self-assembled monolayer coated surface.
Langmuir | 2011
Yapei Wang; John A. Finlay; Douglas E. Betts; Timothy J. Merkel; J. Christopher Luft; Maureen E. Callow; Joseph M. DeSimone
Herein we report the design of a photocurable amphiphilic co-network consisting of perfluoropolyether and poly(ethylene glycol) segments that display outstanding nonfouling characteristics with respect to spores of green fouling alga Ulva when cured under high humidity conditions. The analysis of contact angle hysteresis revealed that the poly(ethylene glycol) density at the surface was enhanced when cured under high humidity. The nonfouling behavior of nonbiocidal surfaces against marine fouling is rare because such surfaces usually reduce the adhesion of organisms rather than inhibit colonization. We propose that the resultant surface segregation of these materials induced by high humidity may be a promising strategy for achieving nonfouling materials, and such an approach is more important than simply concentrating poly(ethylene glycol) moieties at an interface because the low surface energy has been maintained in our work.
Biofouling | 2011
Yapei Wang; Louis M. Pitet; John A. Finlay; Lenora H. Brewer; Gemma Cone; Douglas E. Betts; Maureen E. Callow; Dean E. Wendt; Marc A. Hillmyer; Joseph M. DeSimone
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M w = 1500 g mol−1) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M w = 300, 475, 1100 g mol−1), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Journal of the American Chemical Society | 2012
Jie Yu Wang; Yapei Wang; Sergei S. Sheiko; Douglas E. Betts; Joseph M. DeSimone
New methods to direct the self-assembly of particles are highly sought after for multiple applications, including photonics, electronics, and drug delivery. Most techniques, however, are limited to chemical patterning on spherical particles, limiting the range of possible structures. We developed a lithographic technique for fabrication of chemically anisotropic rod-like particles in which we can specify both the size and shape of particles and implement multiple diverse materials to control interfacial interactions. Multiphase rod-like particles, including amphiphilic diblock, triblock, and multiblock were fabricated in the same template mold having a tunable hydrophilic/hydrophobic ratio. Self-assembly of diblock or triblock rods at a water/oil interface led to the formation of bilayer or ribbon-like structures.
Physical Review E | 2011
Eric Brown; Hanjun Zhang; Nicole A. Forman; Benjamin W. Maynor; Douglas E. Betts; Joseph M. DeSimone; Heinrich M. Jaeger
We investigated the effects of particle shape on shear thickening in densely packed suspensions. Rods of different aspect ratios and nonconvex hooked rods were fabricated. Viscosity curves and normal stresses were measured using a rheometer for a wide range of packing fractions for each shape. Suspensions of each shape exhibit qualitatively similar discontinuous shear thickening. The logarithmic slope of the stress vs shear rate increases dramatically with packing fraction and diverges at a critical packing fraction φ(c) which depends on particle shape. The packing fraction dependence of the viscosity curves for different convex shapes can be collapsed when the packing fraction is normalized by φ(c). Intriguingly, viscosity curves for nonconvex particles do not collapse on the same set as convex particles, showing strong shear thickening over a wider range of packing fraction. The value of φ(c) is found to coincide with the onset of a yield stress at the jamming transition, suggesting the jamming transition also controls shear thickening. The yield stress is found to correspond with trapped air in the suspensions, and the scale of the stress can be attributed to interfacial tension forces which dramatically increase above φ(c) due to the geometric constraints of jamming. Using this connection we show that the jamming transition can be identified by simply looking at the surface of suspensions. The relationship between shear and normal stresses is found to be linear in both the shear thickening and jammed regimes, indicating that the shear stresses come from friction. In the limit of zero shear rate, normal stresses pull the rheometer plates together due to the surface tension of the liquid below φ(c), but push the rheometer plates apart due to jamming above φ(c).
Langmuir | 2011
Yapei Wang; Timothy J. Merkel; Kai Chen; Catherine A. Fromen; Douglas E. Betts; Joseph M. DeSimone
Herein we describe a versatile and readily scalable approach for the fabrication of particles with a variety of shapes and sizes from a single master template by augmenting the particle replication in nonwetting templates (PRINT) method with mechanical elongation. Repetition of the elongation steps in one direction leads to the fabrication of linear particles with high aspect ratio (AR), over 40 times greater than in the original master, while a range of particle shapes can be obtained by repeating the elongation procedure while changing the stretching direction, generating diamond, rectangular, curved parallelogram particles from a single cubic master.
Journal of Molecular Structure | 1996
D. Chillura-Martino; R. Triolo; James B. McClain; J. R. Combes; Douglas E. Betts; Dorian A. Canelas; Joseph M. DeSimone; Edward T. Samulski; H.D. Cochran; J.D. Londono; G.D. Wignall
Abstract Superficial fluids (SCF) are becoming an attractive alternative to the liquid solvents traditionally used as polymerization media [1]. As the synthesis proceeds, a wide range of colloidal aggregates form, but there has hitherto been no way to measure such structures directly. We have applied small-angle neutron scattering (SANS) to characterize such systems, and although SCF polymerizations are carried out at high pressures, the penetrating power of the neutron beam means that typical cell windows are virtually transparent. Systems studied include polymers soluble in CO 2 such as poly(1,1-dihydroperfluorooctyl acrylate) (PFOA), poly(hexafluoropropylene oxide) (PHFPO) and poly(dimethyl siloxane) (PDMS). PFOA has previously [2] been shown to exhibit a positive second virial coefficient ( A 2 ), though for PHFPO, A 2 appears to be close to zero ( 10 4 A 2 ⋍ 0 ± 0.2 cm 3 g −2 mol ). PDMS is soluble on the molecular level only in the limit of dilute solution and seems to form aggregates as the concentration increases (c > 0.01 g cm −3 ). Typical hydrocarbon polymers are insoluble in CO 2 , but it has been found that polymerizations may be accomplished via the use of a stabilizer [3]. For example, styrene has been polymerized in CO 2 by means of a polystyrene-b-PFOA block copolymer surfactant, which forms micelles in CO 2 and is also amenable to SANS characterization. Other amphiphilic surfactant molecules that form micelles include PFOA-g-poly(ethylene oxide) (PFOA-g-PEO) graft copolymers, which swell as the CO 2 medium is saturated with water. These systems have been characterized by SANS, by taking advantage of the different contrast options afforded by substituting D 2 O for H 2 O. This paper illustrates the utility of SANS to measure molecular dimensions, thermodynamic variables, molecular weights, micelle structures etc. in supercritical CO 2 .
Polymer | 2001
Kazukiyo Nagai; Satoshi Tanaka; Tsutomu Nakagawa; Michelle E. Arnold; Benny D. Freeman; Denis Leroux; Douglas E. Betts; Joseph M. DeSimone; Francis A. DiGiano
Abstract Solubility and diffusivity of sodium chloride were determined in a series of dense films of phase-separated diblock and triblock copolymers composed of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) and either poly(1,1′-dihydroperfluorooctyl methacrylate (PFOMA) or poly(1,1,2,2-tetrahydroperfluorooctyl acrylate) (PTAN). As the content of hydrophilic PDMAEMA increases in PDMAEMA-b-PFOMA films, total water uptake increases. The salt partition coefficient of these films increases with increasing PDMAEMA content and weight fraction of water in the PDMAEMA domains. In contrast, salt diffusivity is not monotonically correlated with PDMAEMA content and effective hydration. Triblock copolymers exhibit different values of total water uptake, total hydration, salt partition, and diffusion coefficients than those of diblock copolymers (PDMAEMA-b-PFOMA) at the same PDMAEMA concentration. The total water uptake of PFOMA-b-PDMAEMA-b-PFOMA copolymers is lower than that of PDMAEMA-b-PFOMA, while water uptake of PTAN-b-PDMAEMA-b-PTAN films is higher than that of PDMAEMA-b-PFOMA. Salt partition and diffusion coefficients increase monotonically with the amount of freezing water in the hydrophilic domains, suggesting that the state of water in the phase-separated block copolymers is an important factor influencing their salt uptake and transport properties.