Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas E. Longman is active.

Publication


Featured researches published by Douglas E. Longman.


Combustion Theory and Modelling | 2014

Development and validation of an n-dodecane skeletal mechanism for spray combustion applications

Zhaoyu Luo; Sibendu Som; S. Mani Sarathy; Max Plomer; William J. Pitz; Douglas E. Longman; Tianfeng Lu

n-Dodecane is a promising surrogate fuel for diesel engine study because its physicochemical properties are similar to those of the practical diesel fuels. In the present study, a skeletal mechanism for n-dodecane with 105 species and 420 reactions was developed for spray combustion simulations. The reduction starts from the most recent detailed mechanism for n-alkanes consisting of 2755 species and 11,173 reactions developed by the Lawrence Livermore National Laboratory. An algorithm combining direct relation graph with expert knowledge (DRGX) and sensitivity analysis was employed for the present skeletal reduction. The skeletal mechanism was first extensively validated in 0-D and 1-D combustion systems, including auto-ignition, jet stirred reactor (JSR), laminar premixed flame and counter flow diffusion flame. Then it was coupled with well-established spray models and further validated in 3-D turbulent spray combustion simulations under engine-like conditions. These simulations were compared with the recent experiments with n-dodecane as a surrogate for diesel fuels. It can be seen that combustion characteristics such as ignition delay and flame lift-off length were well captured by the skeletal mechanism, particularly under conditions with high ambient temperatures. Simulations also captured the transient flame development phenomenon fairly well. The results further show that ignition delay may not be the only factor controlling the stabilisation of the present flames since a good match in ignition delay does not necessarily result in improved flame lift-off length prediction.


Journal of Energy Resources Technology-transactions of The Asme | 2012

Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model

Sibendu Som; Douglas E. Longman; Zhaoyu Luo; Max Plomer; Tianfeng Lu; P. K. Senecal; Eric Pomraning

Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynoldsaveraged Navier‐Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the renormalization group (RNG) k-e (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250lm and 125lm were obtained for the RANS and LES cases, respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-e model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl nine-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost. [DOI: 10.1115/1.4007216]


Combustion Theory and Modelling | 2012

A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications

Zhaoyu Luo; Max Plomer; Tianfeng Lu; Sibendu Som; Douglas E. Longman

Biodiesel is a promising alternative fuel for compression ignition (CI) engines. It is a renewable energy source that can be used in these engines without significant alteration in design. The detailed chemical kinetics of biodiesel is however highly complex. In the present study, a skeletal mechanism with 123 species and 394 reactions for a tri-component biodiesel surrogate, which consists of methyl decanoate, methyl 9-decanoate and n-heptane was developed for simulations of 3-D turbulent spray combustion under engine-like conditions. The reduction was based on an improved directed relation graph (DRG) method that is particularly suitable for mechanisms with many isomers, followed by isomer lumping and DRG-aided sensitivity analysis (DRGASA). The reduction was performed for pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2 for both extinction and ignition applications. The initial temperatures for ignition were from 700 to 1800 K. The wide parameter range ensures the applicability of the skeletal mechanism under engine-like conditions. As such the skeletal mechanism is applicable for ignition at both low and high temperatures. Compared with the detailed mechanism that consists of 3299 species and 10806 reactions, the skeletal mechanism features a significant reduction in size while still retaining good accuracy and comprehensiveness. The validations of ignition delay time, flame lift-off length and important species profiles were also performed in 3-D engine simulations and compared with the experimental data from Sandia National Laboratories under CI engine conditions.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2014

Comparison of Mixture and Multifluid Models for In-Nozzle Cavitation Prediction

Michele Battistoni; Sibendu Som; Douglas E. Longman

Fuel injectors often feature cavitation because of large pressure gradients, which in some regions lead to extremely low pressures. The main objective of this work is to compare the prediction capabilities of two multiphase flow approaches for modeling cavitation in small nozzles, like those used in high-pressure diesel or gasoline fuel injectors. Numerical results are assessed against quantitative high resolution experimental data collected at Argonne National Laboratory using synchrotron X-ray radiography of a model nozzle. One numerical approach uses a homogeneous mixture model with the volume of fluid (VOF) method, in which phase change is modeled via the homogeneous relaxation model (HRM). The second approach is based on the multifluid nonhomogeneous model and uses the Rayleigh bubble-dynamics model to account for cavitation. Both models include three components, i.e., liquid, vapor, and air, and the flow is compressible. Quantitatively, the amount of void predicted by the multifluid model is in good agreement with measurements, while the mixture model overpredicts the values. Qualitatively, void regions look similar and compare well with the experimental measurements. Grid converged results have been achieved for the prediction of mass flow rate while grid-convergence for void fraction is still an open point. Simulation results indicate that most of the vapor is produced at the nozzle entrance. In addition, downstream along the centerline, void due to expansion of noncondensable gases has been identified. The paper also includes a discussion about the effect of turbulent pressure fluctuations on cavitation inception.


Journal of Physical Chemistry Letters | 2013

Quantum Tunneling Affects Engine Performance

Sibendu Som; Wei Liu; Dingyu D. Y. Zhou; Gina M. Magnotti; Raghu Sivaramakrishnan; Douglas E. Longman; Rex T. Skodje; Michael J. Davis

We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.


ASME 2012 Internal Combustion Engine Division Fall Technical Conference | 2012

A Reduced Diesel Surrogate Mechanism for Compression Ignition Engine Applications

Mandhapati Raju; Mingjie Wang; P. K. Senecal; Sibendu Som; Douglas E. Longman

A skeletal mechanism with 117 species and 472 reactions for a Diesel surrogate i.e., n-heptane, was developed. The detailed mechanism for n-heptane created by Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The detailed mechanism was then reduced with an enhancement of the Direct Relation Graph (DRG) technique called Parallel DRG-with Error Propagation and Sensitivity Analysis (PDRGEPSA). The reduction was performed for pressures from 20 to 80 atm, equivalence ratios from 0.5 to 2, and an initial temperature range of 600–1200 K, covering the compression ignition (CI) engine conditions. Extensive validations were performed against both 0-D simulations with the detailed mechanism and experimental data for spatially homogeneous systems. In order to perform three-dimensional turbulent spray-combustion and engine simulations, the mechanism was integrated with the multi-zone model in the CONVERGE CFD software to accelerate the calculation of detailed chemical kinetics. The Engine Combustion Network (ECN) data from Sandia National Laboratory was used for validation purposes along with single-cylinder Caterpillar engine data. The skeletal mechanism was able to predict various combustion characteristics accurately such as ignition delay and flame lift-off length (LOL) under different ambient conditions. The performance of the multi-zone solver with respect to the full cell-by-cell chemistry solver (SAGE) is compared for the Caterpillar engine simulation and a good match is obtained with significant speed-up of computational time for the multi-zone solver.Copyright


ASME 2011 Internal Combustion Engine Division Fall Technical Conference | 2011

Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

Sibendu Som; Douglas E. Longman; Zhaoyu Luo; Max Plomer; Tianfeng Lu; P. K. Senecal; Eric Pomraning

Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-e (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 μm and 125 μm were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-e model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.Copyright


Archive | 2012

Influence of Nozzle Orifice Geometry and Fuel Properties on Flow and Cavitation Characteristics of a Diesel Injector

Sibendu Som; Douglas E. Longman; Anita I. Ramírez; Suresh K. Aggarwal

Cavitation refers to the formation of bubbles in a liquid flow leading to a two-phase mixture of liquid and vapor/gas, when the local pressure drops below the vapor pressure of the fluid. Fundamentally, the liquid to vapor transition can occur by heating the fluid at a constant pressure, known as boiling, or by decreasing the pressure at a constant temperature, which is known as cavitation. Since vapor density is at least two orders of magnitude smaller than that of liquid, the phase transition is assumed to be an isothermal process. Modern diesel engines are designed to operate at elevated injection pressures corresponding to high injection velocities. The rapid acceleration of fluid in spray nozzles often leads to flow separation and pockets of low static pressure, prompting cavitation. Therefore, in a diesel injector nozzle, high pressure gradients and shear stresses can lead to cavitation, or the formation of bubbles.


ASME 2007 Internal Combustion Engine Division Fall Technical Conference | 2007

An Experimental Investigation of Biodiesel Injection Characteristics Using a Light-Duty Diesel Injector

Scott A. Miers; Alan L. Kastengren; Essam El-Hannouny; Douglas E. Longman

The objective of this research was to experimentally evaluate the effects of two biodiesel fuels with different viscosities on fuel injection characteristics using a light-duty, common-rail, diesel injection system. A pure biodiesel (B100) and a 50/50 blend of pure biodiesel and refined, bleached, and deodorized vegetable oil (B50V50) were compared with a laboratory diesel fuel equivalent (D100). The fuel viscosity ranged from 2.6 cSt (D100) to 10.9 cSt (B50V50). Three injection pressures and two injector nozzle geometries and surface finishes were also investigated. Measurements of the injected fuel quantity showed that as fuel viscosity increased, the injected volume decreased and the variability in the injected volume tended to increase. This effect was more significant in an injector nozzle with converging, highly hydro-ground holes than one with straight, lightly hydroground holes. The rate-of-injection (ROI) data were quite similar for D100 and B100 when using the straight, lightly hydro-ground nozzle. There is a marked reduction in peak injection rate for the B100, compared to D100, when the highly hydro-ground nozzle was utilized. With both nozzles, the B50V50 blend produced narrower ROI curves with peak injection rates equal to or exceeding those of D100 fuel. For all three fuels, the start-of-injection delay increased as fuel viscosity increased. The end-of-injection time was very similar for D100 and B100 but was advanced for the B50V50 blend.Copyright


Journal of Energy Resources Technology-transactions of The Asme | 2015

Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

Gayatri K. Mistri; Suresh K. Aggarwal; Douglas E. Longman; Avinash Kumar Agarwal

Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesels oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.

Collaboration


Dive into the Douglas E. Longman's collaboration.

Top Co-Authors

Avatar

Sibendu Som

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Suresh K. Aggarwal

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Tianfeng Lu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Anita I. Ramírez

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Zhaoyu Luo

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Max Plomer

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Kastengren

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Essam El-Hannouny

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge