Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas F. Levinson is active.

Publication


Featured researches published by Douglas F. Levinson.


The Lancet | 2013

Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis

Jordan W. Smoller; Kenneth S. Kendler; Nicholas John Craddock; Phil H. Lee; Benjamin M. Neale; John I. Nurnberger; Stephan Ripke; Susan L. Santangelo; Patrick F. Sullivan; Shaun Purcell; Richard Anney; Jan K. Buitelaar; Ayman H. Fanous; Stephen V. Faraone; Witte J. G. Hoogendijk; Klaus-Peter Lesch; Douglas F. Levinson; Roy H. Perlis; Marcella Rietschel; Brien P. Riley; Edmund Sonuga-Barke; Russell Schachar; Thomas G. Schulze; Anita Thapar; Michael C. Neale; Patrick Bender; Sven Cichon; Mark J. Daly; John R. Kelsoe; Thomas Lehner

BACKGROUND: Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia. METHODS: We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33,332 cases and 27,888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples. FINDINGS: SNPs at four loci surpassed the cutoff for genome-wide significance (p<5x10(-8)) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers. INTERPRETATION: Our findings show that specific SNPs are associated with a range of psychiatric disorders of childhood onset or adult onset. In particular, variation in calcium-channel activity genes seems to have pleiotropic effects on psychopathology. These results provide evidence relevant to the goal of moving beyond descriptive syndromes in psychiatry, and towards a nosology informed by disease cause. FUNDING: National Institute of Mental Health.BACKGROUND Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia. METHODS We analysed genome-wide single-nucleotide polymorphism (SNP) data for the five disorders in 33,332 cases and 27,888 controls of European ancestory. To characterise allelic effects on each disorder, we applied a multinomial logistic regression procedure with model selection to identify the best-fitting model of relations between genotype and phenotype. We examined cross-disorder effects of genome-wide significant loci previously identified for bipolar disorder and schizophrenia, and used polygenic risk-score analysis to examine such effects from a broader set of common variants. We undertook pathway analyses to establish the biological associations underlying genetic overlap for the five disorders. We used enrichment analysis of expression quantitative trait loci (eQTL) data to assess whether SNPs with cross-disorder association were enriched for regulatory SNPs in post-mortem brain-tissue samples. FINDINGS SNPs at four loci surpassed the cutoff for genome-wide significance (p<5×10(-8)) in the primary analysis: regions on chromosomes 3p21 and 10q24, and SNPs within two L-type voltage-gated calcium channel subunits, CACNA1C and CACNB2. Model selection analysis supported effects of these loci for several disorders. Loci previously associated with bipolar disorder or schizophrenia had variable diagnostic specificity. Polygenic risk scores showed cross-disorder associations, notably between adult-onset disorders. Pathway analysis supported a role for calcium channel signalling genes for all five disorders. Finally, SNPs with evidence of cross-disorder association were enriched for brain eQTL markers. INTERPRETATION Our findings show that specific SNPs are associated with a range of psychiatric disorders of childhood onset or adult onset. In particular, variation in calcium-channel activity genes seems to have pleiotropic effects on psychopathology. These results provide evidence relevant to the goal of moving beyond descriptive syndromes in psychiatry, and towards a nosology informed by disease cause. FUNDING National Institute of Mental Health.


American Journal of Human Genetics | 2003

Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia

Cathryn M. Lewis; Douglas F. Levinson; Lesley H. Wise; Lynn E. DeLisi; Richard E. Straub; Iiris Hovatta; Nigel Melville Williams; Sibylle G. Schwab; Ann E. Pulver; Stephen V. Faraone; Linda M. Brzustowicz; Charles A. Kaufmann; David L. Garver; Hugh Gurling; Eva Lindholm; Hilary Coon; Hans W. Moises; William Byerley; Sarah H. Shaw; Andrea Mesén; Robin Sherrington; F. Anthony O'Neill; Dermot Walsh; Kenneth S. Kendler; Jesper Ekelund; Tiina Paunio; Jouko Lönnqvist; Leena Peltonen; Michael Conlon O'Donovan; Michael John Owen

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bins average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.


Nature | 2009

Common variants on chromosome 6p22.1 are associated with schizophrenia

Jianxin Shi; Douglas F. Levinson; Jubao Duan; Alan R. Sanders; Yonglan Zheng; Itsik Pe'er; Frank Dudbridge; Peter Holmans; Alice S. Whittemore; Bryan J. Mowry; Ann Olincy; Farooq Amin; C. Robert Cloninger; Jeremy M. Silverman; Nancy G. Buccola; William Byerley; Donald W. Black; Raymond R. Crowe; Jorge R. Oksenberg; Daniel B. Mirel; Kenneth S. Kendler; Robert Freedman; Pablo V. Gejman

Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5–1%, with high heritability (80–85%) and complex transmission. Recent studies implicate rare, large, high-penetrance copy number variants in some cases, but the genes or biological mechanisms that underlie susceptibility are not known. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended major histocompatibility complex region on chromosome 6. We carried out a genome-wide association study of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium and SGENE data sets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 (P = 9.54 × 10-9). This region includes a histone gene cluster and several immunity-related genes—possibly implicating aetiological mechanisms involving chromatin modification, transcriptional regulation, autoimmunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms.


Nature Genetics | 2008

Identification of loci associated with schizophrenia by genome-wide association and follow-up

Michael Conlon O'Donovan; Nicholas John Craddock; Nadine Norton; Hywel Williams; T. Peirce; Valentina Escott-Price; Ivan Nikolov; Marian Lindsay Hamshere; Liam Stuart Carroll; Lyudmila Georgieva; Sarah Dwyer; Peter Holmans; Jonathan Marchini; Chris C. A. Spencer; Bryan Howie; Hin-Tak Leung; Annette M. Hartmann; Hans-Jürgen Möller; Derek W. Morris; Yongyong Shi; Guoyin Feng; Per Hoffmann; Peter Propping; Catalina Vasilescu; Wolfgang Maier; Marcella Rietschel; Stanley Zammit; Johannes Schumacher; Emma M. Quinn; Thomas G. Schulze

We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10−5 in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 × 10−4), and the overall pattern of replication was unlikely to occur by chance (P = 9 × 10−8). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 × 10−7) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 × 10−9).


Biological Psychiatry | 2006

The Genetics of Depression: A Review

Douglas F. Levinson

Major depressive disorder (MDD) is common and moderately heritable. Recurrence and early age at onset characterize cases with the greatest familial risk. Major depressive disorder and the neuroticism personality trait have overlapping genetic susceptibilities. Most genetic studies of MDD have considered a small set of functional polymorphisms relevant to monoaminergic neurotransmission. Meta-analyses suggest small positive associations between the polymorphism in the serotonin transporter promoter region (5-HTTLPR) and bipolar disorder, suicidal behavior, and depression-related personality traits but not yet to MDD itself. This polymorphism might also influence traits related to stress vulnerability. Newer hypotheses of depression neurobiology suggest closer study of genes related to neurotoxic and neuroprotective (neurotrophic) processes and to overactivation of the hypothalamic-pituitary axis, with mixed evidence regarding association of MDD with polymorphisms in one such gene (brain-derived neurotrophic factor [BDNF]). Several genome-wide linkage studies of MDD and related traits have been reported or are near completion. There is some evidence for convergence of linkage findings across studies, but more data are needed to permit meta-analysis. Future directions will include more intensive, systematic study of linkage candidate regions and of the whole genome for genetic association; gene expression array studies; and larger-scale studies of gene-environment interactions and of depression-related endophenotypes.


Nature Genetics | 2009

Narcolepsy is strongly associated with the T-cell receptor alpha locus

Joachim Hallmayer; Juliette Faraco; Ling Lin; Stephanie Hesselson; Juliane Winkelmann; Minae Kawashima; Geert Mayer; Giuseppe Plazzi; Sona Nevsimalova; Patrice Bourgin; Sheng Seung-Chul Hong; Yutaka Honda; Makoto Honda; Birgit Högl; William T. Longstreth; Jacques Montplaisir; David Kemlink; Mali Einen; Justin Chen; Stacy L. Musone; Matthew Akana; Taku Miyagawa; Jubao Duan; Alex Desautels; Christine Erhardt; Per Egil Hesla; Francesca Poli; Birgit Frauscher; Jong-Hyun Jeong; Sung-Pil Lee

Narcolepsy with cataplexy, characterized by sleepiness and rapid onset into REM sleep, affects 1 in 2,000 individuals. Narcolepsy was first shown to be tightly associated with HLA-DR2 (ref. 3) and later sublocalized to DQB1*0602 (ref. 4). Following studies in dogs and mice, a 95% loss of hypocretin-producing cells in postmortem hypothalami from narcoleptic individuals was reported. Using genome-wide association (GWA) in Caucasians with replication in three ethnic groups, we found association between narcolepsy and polymorphisms in the TRA@ (T-cell receptor alpha) locus, with highest significance at rs1154155 (average allelic odds ratio 1.69, genotypic odds ratios 1.94 and 2.55, P < 10−21, 1,830 cases, 2,164 controls). This is the first documented genetic involvement of the TRA@ locus, encoding the major receptor for HLA-peptide presentation, in any disease. It is still unclear how specific HLA alleles confer susceptibility to over 100 HLA-associated disorders; thus, narcolepsy will provide new insights on how HLA–TCR interactions contribute to organ-specific autoimmune targeting and may serve as a model for over 100 other HLA-associated disorders.


American Journal of Psychiatry | 2011

Copy Number Variants in Schizophrenia: Confirmation of Five Previous Findings and New Evidence for 3q29 Microdeletions and VIPR2 Duplications

Douglas F. Levinson; Jubao Duan; Sang Oh; Kai Wang; Alan R. Sanders; Jianxin Shi; Nancy R. Zhang; Bryan J. Mowry; Ann Olincy; Farooq Amin; C. Robert Cloninger; Jeremy M. Silverman; Nancy G. Buccola; William Byerley; Donald W. Black; Kenneth S. Kendler; Robert Freedman; Frank Dudbridge; Itsik Pe'er; Hakon Hakonarson; Sarah E. Bergen; Ayman H. Fanous; Peter Holmans; Pablo V. Gejman

OBJECTIVE To evaluate previously reported associations of copy number variants (CNVs) with schizophrenia and to identify additional associations, the authors analyzed CNVs in the Molecular Genetics of Schizophrenia study (MGS) and additional available data. METHOD After quality control, MGS data for 3,945 subjects with schizophrenia or schizoaffective disorder and 3,611 screened comparison subjects were available for analysis of rare CNVs (<1% frequency). CNV detection thresholds were chosen that maximized concordance in 151 duplicate assays. Pointwise and genewise analyses were carried out, as well as analyses of previously reported regions. Selected regions were visually inspected and confirmed with quantitative polymerase chain reaction. RESULTS In analyses of MGS data combined with other available data sets, odds ratios of 7.5 or greater were observed for previously reported deletions in chromosomes 1q21.1, 15q13.3, and 22q11.21, duplications in 16p11.2, and exon-disrupting deletions in NRXN1. The most consistently supported candidate associations across data sets included a 1.6-Mb deletion in chromosome 3q29 (21 genes, TFRC to BDH1) that was previously described in a mild-moderate mental retardation syndrome, exonic duplications in the gene for vasoactive intestinal peptide receptor 2 (VIPR2), and exonic duplications in C16orf72. The case subjects had a modestly higher genome-wide number of gene-containing deletions (>100 kb and >1 Mb) but not duplications. CONCLUSIONS The data strongly confirm the association of schizophrenia with 1q21.1, 15q13.3, and 22q11.21 deletions, 16p11.2 duplications, and exonic NRXN1 deletions. These CNVs, as well as 3q29 deletions, are also associated with mental retardation, autism spectrum disorders, and epilepsy. Additional candidate genes and regions, including VIPR2, were identified. Study of the mechanisms underlying these associations should shed light on the pathophysiology of schizophrenia.


American Journal of Medical Genetics | 1996

A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

Michael Gill; Homero Vallada; David Collier; Pak Sham; Peter Alan Holmans; Robin M. Murray; Peter McGuffin; Shinichiro Nanko; Michael John Owen; David E. Housman; Haig H. Kazazian; Gerald Nestadt; Ann E. Pulver; Richard E. Straub; Charles J. MacLean; Dermot Walsh; Kenneth S. Kendler; Lynn E. DeLisi; M Polymeropoulos; Hilary Coon; William Byerley; R. Lofthouse; Elliot S. Gershon; L Golden; T.J. Crow; Robert Freedman; Claudine Laurent; S BodeauPean; Thierry d'Amato; Maurice Jay

Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets (Vallada et al., Am J Med Genet 60:139-146, 1995; Polymeropoulos et al., Neuropsychiatr Genet 54:93-99, 1994; Lasseter et al., Am J Med Genet, 60:172-173, 1995. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not share (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that may be a susceptibility locus for schizophrenia at 22q12.


Genome Research | 2014

Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals

Alexis Battle; Xiaowei Zhu; James B. Potash; Myrna M. Weissman; Courtney McCormick; Christian D. Haudenschild; Kenneth B. Beckman; Jianxin Shi; Rui Mei; Alexander E. Urban; Stephen B. Montgomery; Douglas F. Levinson; Daphne Koller

Understanding the consequences of regulatory variation in the human genome remains a major challenge, with important implications for understanding gene regulation and interpreting the many disease-risk variants that fall outside of protein-coding regions. Here, we provide a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922 genotyped individuals. We present a comprehensive description of the distribution of regulatory variation--by the specific expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants. We detect variants influencing expression of over ten thousand genes, and through the enhanced resolution offered by RNA-sequencing, for the first time we identify thousands of variants associated with specific phenotypes including splicing and allelic expression. Evaluating the effects of both long-range intra-chromosomal and trans (cross-chromosomal) regulation, we observe modularity in the regulatory network, with three-dimensional chromosomal configuration playing a particular role in regulatory modules within each chromosome. We also observe a significant depletion of regulatory variants affecting central and critical genes, along with a trend of reduced effect sizes as variant frequency increases, providing evidence that purifying selection and buffering have limited the deleterious impact of regulatory variation on the cell. Further, generalizing beyond observed variants, we have analyzed the genomic properties of variants associated with expression and splicing and developed a Bayesian model to predict regulatory consequences of genetic variants, applicable to the interpretation of individual genomes and disease studies. Together, these results represent a critical step toward characterizing the complete landscape of human regulatory variation.


Molecular Psychiatry | 2011

Genome-wide association study of recurrent early-onset major depressive disorder

Jianxin Shi; James B. Potash; James A. Knowles; Myrna M. Weissman; William Coryell; William A. Scheftner; William B. Lawson; J. R. DePaulo; Pablo V. Gejman; Alan R. Sanders; J. K. Johnson; Philip Adams; S Chaudhury; Dubravka Jancic; Oleg V. Evgrafov; A Zvinyatskovskiy; N Ertman; M Gladis; K Neimanas; M Goodell; Nancy Hale; N Ney; Ranjana Verma; Daniel B. Mirel; Peter Holmans; Douglas F. Levinson

A genome-wide association study was carried out in 1020 case subjects with recurrent early-onset major depressive disorder (MDD) (onset before age 31) and 1636 control subjects screened to exclude lifetime MDD. Subjects were genotyped with the Affymetrix 6.0 platform. After extensive quality control procedures, 671 424 autosomal single nucleotide polymorphisms (SNPs) and 25 068 X chromosome SNPs with minor allele frequency greater than 1% were available for analysis. An additional 1 892 186 HapMap II SNPs were analyzed based on imputed genotypic data. Single-SNP logistic regression trend tests were computed, with correction for ancestry-informative principal component scores. No genome-wide significant evidence for association was observed, assuming that nominal P<5 × 10−8 approximates a 5% genome-wide significance threshold. The strongest evidence for association was observed on chromosome 18q22.1 (rs17077540, P=1.83 × 10−7) in a region that has produced some evidence for linkage to bipolar-I or -II disorder in several studies, within an mRNA detected in human brain tissue (BC053410) and approximately 75 kb upstream of DSEL. Comparing these results with those of a meta-analysis of three MDD GWAS data sets reported in a companion article, we note that among the strongest signals observed in the GenRED sample, the meta-analysis provided the greatest support (although not at a genome-wide significant level) for association of MDD to SNPs within SP4, a brain-specific transcription factor. Larger samples will be required to confirm the hypothesis of association between MDD (and particularly the recurrent early-onset subtype) and common SNPs.

Collaboration


Dive into the Douglas F. Levinson's collaboration.

Top Co-Authors

Avatar

Bryan J. Mowry

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxin Shi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James B. Potash

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth S. Kendler

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jeremy M. Silverman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge