Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas G. Johns is active.

Publication


Featured researches published by Douglas G. Johns.


Journal of Cardiovascular Pharmacology | 2007

Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production.

Weike Bao; David J. Behm; Sandhya S. Nerurkar; Zhaohui Ao; Ross Bentley; Rosanna C. Mirabile; Douglas G. Johns; Tina N. Woods; Christopher P. Doe; Robert W. Coatney; Jason F. Ohlstein; Stephen A. Douglas; Robert N. Willette; Tian-Li Yue

Angiotensin II (Ang II) activates p38 mitogen-activated protein kinase (p38 MAPK) and increases reactive oxygen species (ROS), but the nature of the relationship in vivo is not fully understood. We assess the effect of SB239063AN, a highly selective, orally active, p38 MAPK inhibitor, on Ang II-dependent hypertension, target-organ damage and ROS production. Sprague-Dawley rats and MAPKAP kinase-2 knockout mice were infused with Ang II. Ang II infusion increased the levels of phosphorylated p38 MAPK in the heart and aorta. Production of superoxide anion and expression of NAD(P)H oxidase subunit gp91phox in the aorta were increased 4- and 5-fold, respectively. In addition, Ang II infusion led to endothelial dysfunction, progressive and sustained hypertension, and cardiac hypertrophy. Treatment with SB239063AN (800 ppm in the diet) significantly attenuated the levels of phosphorylated p38 MAPK in the heart and aorta, reduced superoxide anion generation by 57% (P < 0.01), markedly suppressed gp91phox mRNA expression, prevented endothelial dysfunction, and blunted both the hypertension and cardiac hypertrophy. Ang II-dependent hypertension was also significantly attenuated in MAPKAP kinase-2 knockout mice. The results suggest that Ang II induced hypertension, organ damage, and ROS production are possibly mediated by p38 MAPK and inhibition of p38 MAPK may offer a therapeutic approach for cardiovascular disease.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Regulation of the ADMA-DDAH system in endothelial cells: a novel mechanism for the sterol response element binding proteins, SREBP1c and -2

Christine Y. Ivashchenko; Benjamin T. Bradley; Zhaohui Ao; James Leiper; Patrick Vallance; Douglas G. Johns

Asymmetric dimethylarginine (ADMA) has been implicated in the progression of cardiovascular disease as an endogenous inhibitor of nitric oxide synthase. The regulation of dimethylarginine dimethylaminohydrolase (DDAH), the enzyme responsible for metabolizing ADMA, is poorly understood. The transcription factor sterol response element binding protein (SREBP) is activated by statins via a reduction of membrane cholesterol content. Because the promoters of both DDAH1 and DDAH2 isoforms contain sterol response elements, we tested the hypothesis that simvastatin regulates DDAH1 and DDAH2 transcription via SREBP. In cultured endothelial cells, simvastatin increased DDAH1 mRNA expression compared with vehicle. In an ADMA loading experiment, simvastatin treatment resulted in a decrease in ADMA content, an indication of increased DDAH activity. The knockdown of SREBP1c protein led to an increase in DDAH1 mRNA expression and activity, whereas the knockdown of SREBP2 led to a decrease in DDAH1 mRNA expression. The role of SREBP2 in the activation of the DDAH1 was supported by chromatin immunoprecipitation studies demonstrating increased binding of SREBP2 to the DDAH1 promoter upon simvastatin stimulation. These data indicate that SREBP1c might act as a repressor and SREBP2 as an activator of DDAH transcription and activity. This study describes a novel mechanism of reciprocal regulation by the SREBP family members of the DDAH-ADMA system, which represents a potential link between cellular cholesterol content and endothelial dysfunction observed in cardiovascular disease.


Circulation-cardiovascular Genetics | 2011

A gene expression signature that classifies human atherosclerotic plaque by relative inflammation status.

Oscar Puig; Jeffrey Yuan; Sergey Stepaniants; Renata Zieba; Emanuel Zycband; Mark Morris; Silvija Coulter; Xiang Yu; John G. Menke; John Woods; Fabian Chen; Dena R. Ramey; Xuanmin He; Edward A. O'Neill; Eric Hailman; Douglas G. Johns; Brian K. Hubbard; Pek Yee Lum; Samuel D. Wright; Mary M. DeSouza; Andrew Plump; Vladimír Reiser

Background— Atherosclerosis is a complex disease requiring improvements in diagnostic techniques and therapeutic treatments. Both improvements will be facilitated by greater exploration of the biology of atherosclerotic plaque. To this end, we carried out large-scale gene expression analysis of human atherosclerotic lesions. Methods and Results— Whole genome expression analysis of 101 plaques from patients with peripheral artery disease identified a robust gene signature (1514 genes) that is dominated by processes related to Toll-like receptor signaling, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction, and lysosomal activity. Further analysis of gene expression in microdissected carotid plaque samples revealed that this signature is differentially expressed in macrophage-rich and smooth muscle cell–containing regions. A quantitative PCR gene expression panel and inflammatory composite score were developed on the basis of the atherosclerotic plaque gene signature. When applied to serial sections of carotid plaque, the inflammatory composite score was observed to correlate with histological and morphological features related to plaque vulnerability. Conclusions— The robust mRNA expression signature identified in the present report is associated with pathological features of vulnerable atherosclerotic plaque and may be useful as a source of biomarkers and targets of novel antiatherosclerotic therapies.


Journal of Lipid Research | 2012

Quantifying apoprotein synthesis in rodents: coupling LC-MS/MS analyses with the administration of labeled water.

Haihong Zhou; Wenyu Li; Sheng-Ping Wang; Vivienne Mendoza; Ray Rosa; James Hubert; Kithsiri Herath; Theresa McLaughlin; Rory J. Rohm; Kenny K. Wong; Douglas G. Johns; Stephen F. Previs; Brian K. Hubbard; Thomas P. Roddy

Stable isotope tracer studies of apoprotein flux in rodent models present difficulties as they require working with small volumes of plasma. We demonstrate the ability to measure apoprotein flux by administering either 2H- or 18O-labeled water to mice and then subjecting samples to LC-MS/MS analyses; we were able to simultaneously determine the labeling of several proteolytic peptides representing multiple apoproteins. Consistent with relative differences reported in the literature regarding apoprotein flux in humans, we found that the fractional synthetic rate of apoB is greater than apoA1 in mice. In addition, the method is suitable for quantifying acute changes in protein flux: we observed a stimulation of apoB production in mice following an intravenous injection of Intralipid and a decrease in apoB production in mice treated with an inhibitor of microsomal triglyceride transfer protein. In summary, we demonstrate a high-throughput method for studying apoprotein kinetics in rodent models. Although notable differences exist between lipoprotein profiles that are observed in rodents and humans, we expect that the method reported here has merit in studies of dyslipidemia as i) rodent models can be used to probe target engagement in cases where one aims to modulate apoprotein production and ii) the approach should be adaptable to studies in humans.


Journal of Lipid Research | 2011

Quantifying cholesterol synthesis in vivo using (2)H(2)O: enabling back-to-back studies in the same subject.

Stephen F. Previs; Ablatt Mahsut; Alison Kulick; Keiana Dunn; Genevieve Andrews-Kelly; Christopher A. Johnson; Gowri Bhat; Kithsiri Herath; Paul L. Miller; Sheng-Ping Wang; Karim Azer; Jing Xu; Douglas G. Johns; Brian K. Hubbard; Thomas P. Roddy

The advantages of using 2H2O to quantify cholesterol synthesis include i) homogeneous precursor labeling, ii) incorporation of 2H via multiple pathways, and iii) the ability to perform long-term studies in free-living subjects. However, there are two concerns. First, the t1/2 of tracer in body water presents a challenge when there is a need to acutely replicate measurements in the same subject. Second, assumptions are made regarding the number of hydrogens (n) that are incorporated during de novo synthesis. Our primary objective was to determine whether a step-based approach could be used to repeatedly study cholesterol synthesis a subject. We observed comparable changes in the 2H-labeling of plasma water and total plasma cholesterol in African-Green monkeys that received five oral doses of 2H2O, each dose separated by one week. Similar rates of cholesterol synthesis were estimated when comparing data in the group over the different weeks, but better reproducibility was observed when comparing replicate determinations of cholesterol synthesis in the same nonhuman primate during the respective dosing periods. Our secondary objective was to determine whether n depends on nutritional status in vivo; we observed n of ∼25 and ∼27 in mice fed a high-carbohydrate (HC) versus carbohydrate-free (CF) diet, respectively. We conclude that it is possible to acutely repeat studies of cholesterol synthesis using 2H2O and that n is relatively constant.


American Journal of Physiology-endocrinology and Metabolism | 2012

Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification

Kristian K. Jensen; Stephen F. Previs; Lei Zhu; Kithsiri Herath; Sheng-Ping Wang; Gowri Bhat; Guanghui Hu; Paul L. Miller; David G. McLaren; Myung K. Shin; Thomas F. Vogt; Liangsu Wang; Kenny K. Wong; Thomas P. Roddy; Douglas G. Johns; Brian K. Hubbard

The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.


Analytical Chemistry | 2013

Use of [13C18] oleic acid and mass isotopomer distribution analysis to study synthesis of plasma triglycerides in vivo: analytical and experimental considerations.

David G. McLaren; Helene L. Cardasis; Steven J. Stout; Sheng-Ping Wang; Vivienne Mendoza; Jose Castro-Perez; Paul L. Miller; Beth Ann Murphy; Anne-Marie Cumiskey; Michele A. Cleary; Douglas G. Johns; Stephen F. Previs; Thomas P. Roddy

We have previously reported on a liquid chromatography-mass spectrometry method to determine the disposition of [(13)C18]-oleic acid following intravenous and oral administration in vivo. This approach has enabled us to study a variety of aspects of lipid metabolism including a quantitative assessment of triglyceride synthesis. Here we present a more rigorous evaluation of the constraints imposed upon the analytical method in order to generate accurate data using this stable-isotope tracer approach along with more detail on relevant analytical figures of merit including limits of quantitation, precision, and accuracy. The use of mass isotopomer distribution analysis (MIDA) to quantify plasma triglyceride synthesis is specifically highlighted, and a re-evaluation of the underlying mathematics has enabled us to present a simplified series of equations. The derivation of this MIDA model and the significance of all underlying assumptions are explored in detail, and examples are given of how it can successfully be applied to detect differences in plasma triglyceride synthesis in lean and high-fat diet fed mouse models. More work is necessary to evaluate the applicability of this approach to triglyceride stores with slower rates of turnover such as in adipose or muscle tissue; however, the present report provides investigators with the tools necessary to conduct such studies.


European Journal of Pharmacology | 2009

Heme-oxygenase induction inhibits arteriolar thrombosis in vivo : Effect of the non-substrate inducer cobalt protoporphyrin

Douglas G. Johns; Dorothy Zelent; Zhaohui Ao; Benjamin T. Bradley; Alexandra Cooke; Lisa Contino; Erding Hu; Stephen A. Douglas; Michael C. Jaye

Heme oxygenase-1 (HO) metabolizes heme to form the vasodilator carbon monoxide and antioxidant biliverdin. Upregulation of HO-1 by hemin, which is also a substrate attenuates thrombosis in rodent models, however, whether protection is due to HO-1 upregulation or to increased substrate availability is unknown. This study tested the hypothesis that treatment of mice with cobalt protoporphyrin (CoPP), a non-substrate HO-1 inducer, would protect the endothelium from laser injury. C57Bl/J6 mice were treated with vehicle, CoPP (20 mg/kg), CoPP plus the HO-1 inhibitor tin protoporphyrin (SnPP; 20 mg/kg) or SnPP alone for 18 h. Intravital microscopy was used to quantitate thrombus formation in cremaster arterioles in response to laser ablation of the endothelium. CoPP treatment inhibited thrombosis by 43% compared to vehicle (P<0.05). SnPP co-treatment negated the inhibitory effect of CoPP while SnPP alone potentiated thrombosis compared to vehicle. In CoPP-treated animals, cremaster HO-1 mRNA expression was increased 59+/-17-fold over vehicle (P<0.001). Co-treatment with CoPP+SnPP attenuated this effect by 36%, however the increase in HO-1 protein induced by CoPP was unaffected by SnPP. Induction of HO-1 by the non-substrate inducer CoPP protects against laser induced endothelial injury without the need for increased substrate. Small molecule, substrate-independent upregulation of HO-1 expression represents a feasible approach to ameliorate endothelial dysfunction in cardiovascular disease.


International Journal of Molecular Sciences | 2014

Lipidome of Atherosclerotic Plaques from Hypercholesterolemic Rabbits

Lazar A. Bojic; David G. McLaren; Vinit Shah; Stephen F. Previs; Douglas G. Johns; Jose Castro-Perez

The cellular, macromolecular and neutral lipid composition of the atherosclerotic plaque has been extensively characterized. However, a comprehensive lipidomic analysis of the major lipid classes within atherosclerotic lesions has not been reported. The objective of this study was to produce a detailed framework of the lipids that comprise the atherosclerotic lesion of a widely used pre-clinical model of plaque progression. Male New Zealand White rabbits were administered regular chow supplemented with 0.5% cholesterol (HC) for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our lipidomic analyses of plaques isolated from rabbits fed the HC diet, using ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometry, detected most of the major lipid classes including: Cholesteryl esters, triacylglycerols, phosphatidylcholines, sphingomyelins, diacylglycerols, fatty acids, phosphatidylserines, lysophosphatidylcholines, ceramides, phosphatidylglycerols, phosphatidylinositols and phosphatidylethanolamines. Given that cholesteryl esters, triacylglycerols and phosphatidylcholines comprise greater than 75% of total plasma lipids, we directed particular attention towards the qualitative and quantitative assessment of the fatty acid composition of these lipids. We additionally found that sphingomyelins were relatively abundant lipid class within lesions, and compared the abundance of sphingomyelins to their precursor phosphatidylcholines. The studies presented here are the first approach to a comprehensive characterization of the atherosclerotic plaque lipidome.


ACS Medicinal Chemistry Letters | 2016

Discovery of Novel Indoline Cholesterol Ester Transfer Protein Inhibitors (CETP) through a Structure-Guided Approach

Jonathan E. Wilson; Ravi Kurukulasuriya; Mikhail Reibarkh; Maud Reiter; Aaron Zwicker; Kake Zhao; Fengqi Zhang; Rajan Anand; Vincent J. Colandrea; Anne-Marie Cumiskey; Alejandro Crespo; Ruth A. Duffy; Beth Ann Murphy; Kaushik Mitra; Douglas G. Johns; Joseph L. Duffy; Petr Vachal

Using the collective body of known (CETP) inhibitors as inspiration for design, a structurally novel series of tetrahydroquinoxaline CETP inhibitors were discovered. An exemplar from this series, compound 5, displayed potent in vitro CETP inhibition and was efficacious in a transgenic cynomologus-CETP mouse HDL PD (pharmacodynamic) assay. However, an undesirable metabolic profile and chemical instability hampered further development of the series. A three-dimensional structure of tetrahydroquinoxaline inhibitor 6 was proposed from (1)H NMR structural studies, and this model was then used in silico for the design of a new class of compounds based upon an indoline scaffold. This work resulted in the discovery of compound 7, which displayed potent in vitro CETP inhibition, a favorable PK-PD profile relative to tetrahydroquinoxaline 5, and dose-dependent efficacy in the transgenic cynomologus-CETP mouse HDL PD assay.

Collaboration


Dive into the Douglas G. Johns's collaboration.

Top Co-Authors

Avatar

Thomas P. Roddy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert N. Willette

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge