Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas Ganini is active.

Publication


Featured researches published by Douglas Ganini.


Journal of Hepatology | 2013

Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis

Saurabh Chatterjee; Douglas Ganini; Erik J. Tokar; Ashutosh Kumar; Suvarthi Das; Jean T. Corbett; Maria B. Kadiiska; Michael P. Waalkes; Anna Mae Diehl; Ronald P. Mason

BACKGROUND & AIMS Progression from steatosis to steatohepatitic lesions is hypothesized to require a second hit. These lesions have been associated with increased oxidative stress, often ascribed to high levels of leptin and other proinflammatory mediators. Here we have examined the role of leptin in inducing oxidative stress and Kupffer cell activation in CCl4-mediated steatohepatitic lesions of obese mice. METHODS Male C57BL/6 mice fed with a high-fat diet (60%kcal) at 16 weeks were administered CCl₄ to induce steatohepatitic lesions. Approaches included use of immuno-spin trapping for measuring free radical stress, gene-deficient mice for leptin, p47 phox, iNOS and adoptive transfer of leptin primed macrophages in vivo. RESULTS Diet-induced obese (DIO) mice, treated with CCl4 increased serum leptin levels. Oxidative stress was significantly elevated in the DIO mouse liver, but not in ob/ob mice, or in DIO mice treated with leptin antibody. In ob/ob mice, leptin supplementation restored markers of free radical generation. Markers of free radical formation were significantly decreased by the peroxynitrite decomposition catalyst FeTPPS, the iNOS inhibitor 1400W, the NADPH oxidase inhibitor apocynin, or in iNOS or p47 phox-deficient mice. These results correlated with the decreased expression of TNF-alpha and MCP-1. Kupffer cell depletion eliminated oxidative stress and inflammation, whereas in macrophage-depleted mice, the adoptive transfer of leptin-primed macrophages significantly restored inflammation. CONCLUSIONS These results, for the first time, suggest that leptin action in macrophages of the steatotic liver, through induction of iNOS and NADPH oxidase, causes peroxynitrite-mediated oxidative stress thus activating Kupffer cells.


Nature Communications | 2015

MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer

Peter C. Hart; Mao Mao; André Luelsdorf Pimenta de Abreu; Kristine Ansenberger-Fricano; Dede N. Ekoue; Douglas Ganini; Andre Kajdacsy-Balla; Alan M. Diamond; Richard D. Minshall; Marcia Edilaine Lopes Consolaro; Janine H. Santos; Marcelo G. Bonini

Manganese superoxide dismutase (MnSOD/SOD2) is a mitochondria-resident enzyme that governs the types of reactive oxygen species egressing from the organelle to affect cellular signaling. Here, we demonstrate that MnSOD upregulation in cancer cells establishes a steady flow of H2O2 originating from mitochondria that sustains AMP-activated kinase (AMPK) activation and the metabolic shift to glycolysis. Restricting MnSOD expression or inhibiting AMPK suppress the metabolic switch and dampens the viability of transformed cells indicating that the MnSOD/AMPK axis is critical in support cancer cell bioenergetics. Recapitulating in vitro findings, clinical and epidemiologic analyses of MnSOD expression and AMPK activation indicated that the MnSOD/AMPK pathway is most active in advanced stage and aggressive breast cancer subtypes. Taken together, our results indicate that MnSOD serves as a biomarker of cancer progression and acts as critical regulator of tumor cell metabolism.


Free Radical Biology and Medicine | 2013

The peroxidase activity of mitochondrial superoxide dismutase

Kristine Ansenberger-Fricano; Douglas Ganini; Mao Mao; Saurabh Chatterjee; Shannon Dallas; Ronald P. Mason; Krisztian Stadler; Janine H. Santos; Marcelo G. Bonini

Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H(2)O(2) outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H(2)O(2) further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H(2)O(2) to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.


Methods in Enzymology | 2013

Chapter One – Photooxidation of Amplex Red to Resorufin: Implications of Exposing the Amplex Red Assay to Light

Fiona A. Summers; Baozhong Zhao; Douglas Ganini; Ronald P. Mason

The Amplex Red assay, a fluorescent assay for the detection of H2O2, relies on the reaction of H2O2, which, in the presence of horseradish peroxidase, oxidizes the colorless, nonfluorescent, Amplex Red with a 1:1 stoichiometry to form the colored, fluorescent resorufin. We have found that resorufin is artifactually formed when Amplex Red is exposed to light. This photochemistry is initiated by trace amounts of resorufin present in Amplex Red stock solutions. ESR spin-trapping studies have demonstrated that superoxide radical is an intermediate in this process. Oxygen consumption measurements further confirmed that superoxide and H2O2 were artifactually produced by the photooxidation of Amplex Red. The artifactual formation of resorufin was also significantly increased by the presence of superoxide dismutase or HRP. This photooxidation process leads to a less sensitive assay for H2O2 under ambient light exposure and potentially invalid measurements under high energy exposure such as UVA irradiation. In general, precautions should be taken to minimize exposure to light, including that from instrumental light, during measurement of oxidative stress with Amplex Red.


Nutrients | 2014

Astaxanthin Supplementation Delays Physical Exhaustion and Prevents Redox Imbalances in Plasma and Soleus Muscles of Wistar Rats

Tatiana G. Polotow; Cristina V. Vardaris; Andrea R. Mihaliuc; Marina S. Gonçalves; Benedito Pereira; Douglas Ganini; Marcelo P. Barros

Astaxanthin (ASTA) is a pinkish-orange carotenoid commonly found in marine organisms, especially salmon. ASTA is a powerful antioxidant and suggested to provide benefits for human health, including the inhibition of LDL oxidation, UV-photoprotection, and prophylaxis of bacterial stomach ulcers. Exercise is associated to overproduction of free radicals in muscles and plasma, with pivotal participation of iron ions and glutathione (GSH). Thus, ASTA was studied here as an auxiliary supplement to improve antioxidant defenses in soleus muscles and plasma against oxidative damage induced by exhaustive exercise. Long-term 1 mg ASTA/kg body weight (BW) supplementation in Wistar rats (for 45 days) significantly delayed time to exhaustion by 29% in a swimming test. ASTA supplementation increased scavenging/iron-chelating capacities (TEAC/FRAP) and limited exercise-induced iron overload and its related pro-oxidant effects in plasma of exercising animals. On the other hand, ASTA induced significant mitochondrial Mn-dependent superoxide dismutase and cytosolic glutathione peroxidase antioxidant responses in soleus muscles that, in turn, increased GSH content during exercise, limited oxidative stress, and delayed exhaustion. We also provided significant discussion about a putative “mitochondrial-targeted” action of ASTA based on previous publications and on the positive results found in the highly mitochondrial populated (oxidative-type) soleus muscles here.


Free Radical Biology and Medicine | 2012

Kinetics of the oxidation of reduced Cu,Zn-superoxide dismutase by peroxymonocarbonate.

Kalina Ranguelova; Douglas Ganini; Marcelo G. Bonini; Robert E. London; Ronald P. Mason

Kinetic evidence is reported for the role of the peroxymonocarbonate, HOOCO(2)(-), as an oxidant for reduced Cu,Zn-superoxide dismutase-Cu(I) (SOD1) during the peroxidase activity of the enzyme. The formation of this reactive oxygen species results from the equilibrium between hydrogen peroxide and bicarbonate. Recently, peroxymonocarbonate has been proposed to be a key substrate for reduced SOD1 and has been shown to oxidize SOD1-Cu(I) to SOD1-Cu(II) much faster than H(2)O(2). We have reinvestigated the kinetics of the reaction between SOD1-Cu(I) and HOOCO(2)(-) by using conventional stopped-flow spectrophotometry and obtained a second-order rate constant of k=1600±100M(-1)s(-1) for SOD1-Cu(I) oxidation by HOOCO(2)(-). Our results demonstrate that peroxymonocarbonate oxidizes SOD1-Cu(I) to SOD1-Cu(II) and is in turn reduced to the carbonate anion radical. It is proposed that the dissociation of His61 from the active site Cu(I) in SOD-Cu(I) contributes to this chemistry by facilitating the binding of larger anions, such as peroxymonocarbonate.


Redox biology | 2017

Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells

Douglas Ganini; Fabian Leinisch; Ashutosh Kumar; JinJie Jiang; Erik J. Tokar; Christine Malone; Robert M. Petrovich; Ronald P. Mason

Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1], [2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H2O2) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H2O2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O2•–) and H2O2 in the presence of NADH. Generation of the free radical O2•– and H2O2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies.


Diabetes | 2015

Loss of NOX-derived superoxide exacerbates diabetogenic CD4 T cell effector responses in Type 1 Diabetes

Lindsey E. Padgett; Brian Anderson; Chao Liu; Douglas Ganini; Ronald P. Mason; Jon D. Piganelli; Clayton E. Mathews; Hubert M. Tse

Reactive oxygen species (ROS) play prominent roles in numerous biological systems. While classically expressed by neutrophils and macrophages, CD4 T cells also express NADPH oxidase (NOX), the superoxide-generating multisubunit enzyme. Our laboratory recently demonstrated that superoxide-deficient nonobese diabetic (NOD.Ncf1m1J) mice exhibited a delay in type 1 diabetes (T1D) partially due to blunted IFN-γ synthesis by CD4 T cells. For further investigation of the roles of superoxide on CD4 T-cell diabetogenicity, the NOD.BDC-2.5.Ncf1m1J (BDC-2.5.Ncf1m1J) mouse strain was generated, possessing autoreactive CD4 T cells deficient in NOX-derived superoxide. Unlike NOD.Ncf1m1J, stimulated BDC-2.5.Ncf1m1J CD4 T cells and splenocytes displayed elevated synthesis of Th1 cytokines and chemokines. Superoxide-deficient BDC-2.5 mice developed spontaneous T1D, and CD4 T cells were more diabetogenic upon adoptive transfer into NOD.Rag recipients due to a skewing toward impaired Treg suppression. Exogenous superoxide blunted exacerbated Th1 cytokines and proinflammatory chemokines to approximately wild-type levels, concomitant with reduced IL-12Rβ2 signaling and P-STAT4 (Y693) activation. These results highlight the importance of NOX-derived superoxide in curbing autoreactivity due, in part, to control of Treg function and as a redox-dependent checkpoint of effector T-cell responses. Ultimately, our studies reveal the complexities of free radicals in CD4 T-cell responses.


Journal of The International Society of Sports Nutrition | 2012

Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test.

Marcelo P. Barros; Douglas Ganini; Leandro Lorenço-Lima; C. O. Soares; Benedito Pereira; Etelvino J. H. Bechara; Leonardo R. Silveira; Rui Curi; Tácito P. Souza-Junior

BackgroundDietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test.ResultsMaximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects.ConclusionsOur data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.


Free Radical Biology and Medicine | 2012

Ceruloplasmin (ferroxidase) oxidizes hydroxylamine probes: deceptive implications for free radical detection

Douglas Ganini; Donatella Canistro; JinJie Jang; Krisztian Stadler; Ronald P. Mason; Maria B. Kadiiska

Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification.

Collaboration


Dive into the Douglas Ganini's collaboration.

Top Co-Authors

Avatar

Ronald P. Mason

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marcelo G. Bonini

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Janine H. Santos

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashutosh Kumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert M. Petrovich

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lori L. Edwards

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maria B. Kadiiska

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erik J. Tokar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

JinJie Jiang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge