Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas Hunt is active.

Publication


Featured researches published by Douglas Hunt.


Bulletin of the American Meteorological Society | 2008

THE COSMIC/FORMOSAT-3 MISSION : Early Results

Richard A. Anthes; P. A. Bernhardt; Yongsheng Chen; L. Cucurull; K. F. Dymond; D. Ector; S. B. Healy; Shu-peng Ho; Douglas Hunt; Ying-Hwa Kuo; Hui Liu; Kevin W. Manning; C. Mccormick; Thomas K. Meehan; William J. Randel; Christian Rocken; William S. Schreiner; Sergey Sokolovskiy; Stig Syndergaard; D. C. Thompson; Kevin E. Trenberth; Tae-Kwon Wee; Nick Yen; Zhen Zeng

The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean. On 15 April 2006, the joint Taiwan-U.S. Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3, hereafter COSMIC) mission, a constellation of six microsatellites, was launched into a 512-km orbit. After launch the satellites were gradually deployed to their final orbits at 800 km, a process that took about 17 months. During the early weeks of the deployment, the satellites were spaced closely, offering a unique opportunity to verify the high precision of RO measurements. As of September 2007, COSMIC is providing about 2000 RO soundings per day to support the research and operational communities. COSMIC RO dat...


Journal of Geophysical Research | 1997

Analysis and validation of GPS/MET data in the neutral atmosphere

Christian Rocken; Richard A. Anthes; M. Exner; Douglas Hunt; Sergey Sokolovskiy; Randolph Ware; Michael E. Gorbunov; William S. Schreiner; D. Feng; Benjamin M. Herman; Ying-Hwa Kuo; Xiaolei Zou

The Global Positioning System/Meteorology ( GPS/MET) Program was established in 1993 by the University Corporation for Atmospheric Research ( UCAR) to demonstrate active limb sounding of the Earths atmosphere using the radio occultation technique. The demonstration system observes occulted GPS satellite signals received by a low Earth orbiting ( LEO) satellite, MicroLab-1, launched April 3,1995. The system can profile ionospheric electron density and neutral atmospheric properties. Neutral atmospheric refractivity, density, pressure, and temperature are derived at altitudes where the amount of water vapor is low. At lower altitudes, vertical profiles of density, pressure, and water vapor pressure can be derived from the GPS/MET refractivity profiles if temperature data from an independent source are available. This paper describes the GPS/MET data analysis procedures and validates GPS/MET data with statistics and illustrative case studies. We compare more than 1200 GPS/MET neutral atmosphere soundings to correlative data from operational global weather analyses, radiosondes, and the GOES, TOVS, UARS/MLS and HALOE orbiting atmospheric sensors. Even though many GPS/MET soundings currently fail to penetrate the lowest 5 km of the troposphere in the presence of significant water vapor, our results demonstrate 1°C mean temperature agreement with the best correlative data sets between 1 and 40 km. This and the fact that GPS/MET observations are all-weather and self-calibrating suggests that radio occultation technology has the potential to make a strong contribution to a global observing system supporting weather prediction and weather and climate research.


Radio Science | 1999

Analysis and validation of GPS/MET radio occultation data in the ionosphere

William S. Schreiner; Sergey Sokolovskiy; Christian Rocken; Douglas Hunt

Global Positioning System (GPS) radio occultation signals received by a low Earth orbit (LEO) satellite provide information about the global distribution of electron den- sity in the ionosphere. We examine two radio occultation inversion algorithms. The first algo- rithm utilizes the Abel integral transform, which assumes spherical symmetry of the electron density field. We test this algorithm with two approaches: through the computation of bend- ing angles and through the computation of total electron content (TEC) assuming straight line propagation. We demonstrate that for GPS frequencies and for observations in LEO, the as- sumption of straight-line propagation (neglecting bending) introduces small errors when monitoring the F2 layer. The second algorithm, which also assumes straight-line propagation, is a three-dimensional (3-D) inversion constrained with the horizontal structure of a priori electron density fields. As a priori fields we use tomographic solutions and the parameterized real-time ionospheric specification model (PRISM) when adjusted with ionosonde data or ground-based GPS vertical TEC maps. For both algorithms we calibrate the occultation data by utilizing observations from the part of the LEO that is closer to the GPS satellite. For in- versions we use dual-frequency observational data (the difference of L1 and L2 phase ob- servables) which cancel orbit errors (without applying precise orbit determination) and clock errors (without requiring synchronous ground data) and thus may allow inversions to be computed close to real time in the future. The Abel and 3-D constrained algorithms are vali- dated by statistically comparing 4 days of inversions with critical frequency (foF2) data from a network of 45 ionosonde stations and with vertical TEC data from the global network of GPS ground receivers. Globally, the Abel inversion approach agrees with the foF2 correlative data at the 13% rms level, with a negligible mean difference. All tested 3-D constrained in- version approaches possess a statistically significant mean difference when compared with the ionosonde data. The vertical TEC correlative comparisons for both the Abel and 3-D con- strained inversions are significantly biased (-30%) by the electrons above the 735-km LEO altitude.


Journal of Geophysical Research | 2012

Global 3-D ionospheric electron density reanalysis based on multisource data assimilation

Xinan Yue; William S. Schreiner; Ying-Hwa Kuo; Douglas Hunt; Wenbin Wang; Stanley C. Solomon; A. G. Burns; Dieter Bilitza; Jann-yenq Liu; Weixing Wan; Jens Wickert

[1] We report preliminary results of a global 3-D ionospheric electron density reanalysis demonstration study during 2002–2011 based on multisource data assimilation. The monthly global ionospheric electron density reanalysis has been done by assimilating the quiet days ionospheric data into a data assimilation model constructed using the International Reference Ionosphere (IRI) 2007 model and a Kalman filter technique. These data include global navigation satellite system (GNSS) observations of ionospheric total electron content (TEC) from ground-based stations, ionospheric radio occultations by CHAMP, GRACE, COSMIC, SAC-C, Metop-A, and the TerraSAR-X satellites, and Jason-1 and 2 altimeter TEC measurements. The output of the reanalysis are 3-D gridded ionospheric electron densities with temporal and spatial resolutions of 1 h in universal time, 5 in latitude, 10 in longitude, and 30 km in altitude. The climatological features of the reanalysis results, such as solar activity dependence, seasonal variations, and the global morphology of the ionosphere, agree well with those in the empirical models and observations. The global electron content derived from the international GNSS service global ionospheric maps, the observed electron density profiles from the Poker Flat Incoherent Scatter Radar during 2007–2010, and foF2 observed by the global ionosonde network during 2002–2011 are used to validate the reanalysis method. All comparisons show that the reanalysis have smaller deviations and biases than the IRI-2007 predictions. Especially after April 2006 when the six COSMIC satellites were launched, the reanalysis shows significant improvement over the IRI predictions. The obvious overestimation of the low-latitude ionospheric F region densities by the IRI model during the 23/24 solar minimum is corrected well by the reanalysis. The potential application and improvements of the reanalysis are also discussed.


Space Weather-the International Journal of Research and Applications | 2011

Quantitative evaluation of the low Earth orbit satellite based slant total electron content determination

Xinan Yue; William S. Schreiner; Douglas Hunt; Christian Rocken; Ying-Hwa Kuo

[1] With the increased number of low Earth orbit (LEO) satellites equipped with GPS receivers, LEO based GPS observations play a more important role in space weather research because of better global coverage and higher vertical resolution. GPS slant total electron content (TEC) is one of the most important space weather products. In this paper, the LEO based slant TEC derivation method and the main error sources, including the multipath calibration, the leveling of phase to the pseudorange TEC, and the differential code bias (DCB) estimation, are described systematically. It is found that the DCB estimation method based on the spherical symmetry ionosphere assumption can obtain reasonable results by analyzing data from multiple LEO missions. The accuracy of the slant TEC might be enhanced if the temperature dependency of DCB estimation is considered. The calculated slant TEC is validated through comparison with empirical models and analyzing the TEC difference of COSMIC colocated clustered observations during the initial stage. Quantitatively, the accuracy of the LEO slant TEC can be estimated at 1–3 tecu, depending on the mission. Possible use of the LEO GPS data in ionosphere and plasmasphere is discussed.


Atmosphere and Climate: Studies by Occultation Methods | 2006

Preparing for COSMIC: Inversion and Analysis of Ionospheric Data Products

Stig Syndergaard; William S. Schreiner; C. Rocken; Douglas Hunt; K. F. Dymond

The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is scheduled for launch in 2006. COSMIC will consist of six low earth orbiting satellites in planes separated by 24° to provide global atmospheric and ionospheric observations. One of the goals is to demonstrate near real-time processing of data products for numerical weather prediction and space weather applications. Each COSMIC satellite will carry three payloads: (1) a Global Positioning System (GPS) occultation receiver with two high-gain limb viewing antennas and two antennas for precision orbit determination, (2) a Tiny Ionospheric Photometer (TIP) for monitoring the electron density via nadir radiance measurements along the sub-satellite track, and (3) a Tri-Band Beacon (TBB) transmitter for ionospheric tomography and scintillation studies. The data from all these payloads will be processed at the COSMIC Data Analysis and Archival Center (CDAAC). Here we give an overview of the ionospheric data products from COSMIC and focus on the plans and preliminary simulation studies for analyzing the ionospheric occultation data and combining them with ground-based GPS, TIP, and TBB observations.


Remote Sensing | 2010

Global Evaluation of Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from COSMIC and ECMWF Analysis

Shu-peng Ho; Xinjia Zhou; Ying-Hwa Kuo; Douglas Hunt; Jun-hong Wang

In this study, we compare specific humidity profiles derived from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) from August to November 2006 with those from different types of radiosonde and from ECMWF global analysis. Comparisons show that COSMIC specific humidity data agree well with ECMWF analysis over different regions of the world for both day and night times. On the contrary, evaluation against COSMIC specific humidity shows a distinct dry bias of Shang-E radiosonde (China) and an obvious wet bias of VIZ-type (USA). No obvious specific humidity biases are found for MRZ (Russia) and MEISEI (Japan) radiosondes. These results demonstrate the usefulness of COSMIC water vapor for quantifying the dry/wet biases among different sensor types.


Journal of Atmospheric and Oceanic Technology | 2009

Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals

Sergey Sokolovskiy; William S. Schreiner; Christian Rocken; Douglas Hunt

Abstract GPS radio occultation remote sensing of the neutral atmosphere requires ionospheric correction of L1 and L2 signals. The ionosphere-corrected variables derived from radio occultation signals—such as the phase, Doppler, and bending angle—are affected by small-scale ionospheric effects that are not completely eliminated by the ionospheric correction. They are also affected by noise from mainly the L2 signal. This paper introduces a simple method for optimal filtering of the L4 = L1 − L2 signal used to correct the L1 signal, which minimizes the combined effects of both the small-scale ionospheric residual effects and L2 noise on the ionosphere-corrected variables. Statistical comparisons to high-resolution numerical weather models from the European Centre for Medium-Range Weather Forecasts (ECMWF) validate that this increases the accuracy of radio occultation inversions in the stratosphere.


Bulletin of the American Meteorological Society | 1998

A GPS/MET Sounding through an Intense Upper-Level Front

Ying-Hwa Kuo; Xiaolei Zou; Shou-Jun Chen; Wei Huang; Yong-Run Guo; Richard A. Anthes; M. Exner; Douglas Hunt; Christian Rocken; Sergey Sokolovskiy

A Global Positioning System Meteorology (GPS/MET) proof-of-concept experiment became a reality on 3 April 1995. A small satellite carrying a modified GPS receiver was launched into earth orbit to demonstrate the feasibility of active limb sounding of the earths neutral atmosphere and ionosphere using the radio occultation method. On 22 October 1995, a GPS/MET occultation took place over northeastern China where a dense network of radiosonde observations was available within an hour of the occultation. The GPS/MET refractivity profile shows an inflection, and the corresponding temperature retrieval displays a sharp temperature inversion around 310 mb. Subjective analyses based on radiosonde observations indicate that the GPS/MET occultation went through a strong upper-level front. In this paper, the GPS/MET sounding is compared with nearby radiosonde observations to assess its accuracy and ability to resolve a strong mesoscale feature. The inflection in the refractivity profile and the sharp frontal inversion seen in the GPS/MET sounding were verified closely by a radiosonde located about 150 km to the east of the GPS/MET occultation site. A similar frontal structure was also found in other nearby radiosonde observations. These results showed that high-quality GPS/MET radio occultation data can be obtained even when the occultation goes through a sharp temperature gradient associated with an upper-level front.


Gps Solutions | 2014

Use of the L2C signal for inversions of GPS radio occultation data in the neutral atmosphere

Sergey Sokolovskiy; William S. Schreiner; Zhen Zeng; Douglas Hunt; Ying-Hwa Kuo; Thomas K. Meehan; T. W. Stecheson; Anthony J. Mannucci; C. O. Ao

Results from processing FORMOSAT-3/COSMIC radio occultations (RO) with the new GPS L2C signal acquired both in phase locked loop (PLL) and open loop (OL) modes are presented. Analysis of L2P, L2C, and L1CA signals acquired in PLL mode shows that in the presence of strong ionospheric scintillation not only L2P tracking, but also L1CA tracking often fails, while L2C tracking is most stable. The use of L2C improves current RO processing in the neutral atmosphere mainly by increasing the number of processed occultations (due to significant reduction in the number of L2 tracking failures) and marginally by a reduction in noise in statistics. The latter is due to the combination of reduced L2C noise (compared to L2P) and increased L1CA noise in those occultations where L2P would have failed. This result suggests application of OL tracking for L1CA and L2C signals throughout an entire occultation to optimally acquire RO data. Two methods of concurrent processing of L1CA and L2C RO signals are considered. Based on testing of individual occultations, these methods allow: (1) reduction in uncertainty of bending angles retrieved by wave optics in the lower troposphere and (2) reduction in small-scale residual errors of the ionospheric correction in the stratosphere.

Collaboration


Dive into the Douglas Hunt's collaboration.

Top Co-Authors

Avatar

William S. Schreiner

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Sergey Sokolovskiy

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Ying-Hwa Kuo

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Christian Rocken

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Stig Syndergaard

Danish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Christian Rocken

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Richard A. Anthes

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Shu-peng Ho

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Xinan Yue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

C. Rocken

University Corporation for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge