Douglas J. Blackiston
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas J. Blackiston.
Cell Cycle | 2009
Douglas J. Blackiston; Kelly A. McLaughlin; Michael Levin
All cells possess long-term, steady-state voltage gradients across the plasma membrane. These transmembrane potentials arise from the combined activity of numerous ion channels, pumps, and gap junction complexes. Increasing data from molecular physiology now reveal that the role of changes in membrane voltage controls, and is in turn controlled by, progression through the cell cycle. We review recent functional data on the regulation of mitosis by bioelectric signals, and the function of membrane voltage and specific potassium, sodium, and chloride ion channels in the proliferation of embryonic, somatic, and neoplastic cells. Its unique properties place this powerful, well-conserved, but still poorly-understood signaling system at the center of the coordinated cellular interactions required for complex pattern formation. Moreover, disregulation of ion channel expression and function is increasingly observed to be not only a useful marker but likely a functional element in oncogenesis. New advances in genomics and the development of in vivo biophysical techniques suggest exciting opportunities for molecular medicine, bioengineering, and regenerative approaches to human health.
Disease Models & Mechanisms | 2011
Douglas J. Blackiston; Dany S. Adams; Joan M. Lemire; Maria Lobikin; Michael Levin
SUMMARY Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest’s environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl). Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT). These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Junji Morokuma; Douglas J. Blackiston; Dany S. Adams; Guiscard Seebohm; Barry A. Trimmer; Michael Levin
Ion transporters, and the resulting voltage gradients and electric fields, have been implicated in embryonic development and regeneration. These biophysical signals are key physiological aspects of the microenvironment that epigenetically regulate stem and tumor cell behavior. Here, we identify a previously unrecognized function for KCNQ1, a potassium channel known to be involved in human Romano–Ward and Jervell–Lange–Nielsen syndromes when mutated. Misexpression of its modulatory wild-type β-subunit XKCNE1 in the Xenopus embryo resulted in a striking alteration of the behavior of one type of embryonic stem cell: the pigment cell lineage of the neural crest. Depolarization of embryonic cells by misexpression of KCNE1 non-cell-autonomously induced melanocytes to overproliferate, spread out, and become highly invasive of blood vessels, liver, gut, and neural tube, leading to a deeply hyperpigmented phenotype. This effect is mediated by the up-regulation of Sox10 and Slug genes, thus linking alterations in ion channel function to the control of migration, shape, and mitosis rates during embryonic morphogenesis. Taken together, these data identify a role for the KCNQ1 channel in regulating key cell behaviors and reveal the molecular identity of a biophysical switch, by means of which neoplastic-like properties can be conferred upon a specific embryonic stem cell subpopulation.
Cellular Physiology and Biochemistry | 2008
Junji Morokuma; Douglas J. Blackiston; Michael Levin
Several ion transporters have been implicated in left-right (LR) patterning. Here, we characterize a new component of the early bioelectrical circuit: the potassium channel KCNQ1 and its accessory subunit KCNE1. Having cloned the native Xenopus versions of both genes, we show that both are asymmetrically localized as maternal proteins during the first few cleavages of frog embryo development in a process dependent on microtubule and actin organization. Molecular loss-of-function using dominant negative constructs demonstrates that both gene products are required for normal LR asymmetry. We propose a model whereby these channels provide an exit path for K+ ions brought in by the H+,K+-ATPase. This physiological module thus allows the obligate but electroneutral H+,K+-ATPase to generate an asymmetric voltage gradient on the left and right sides. Our data reveal a new, bioelectrical component of the mechanisms patterning a large-scale axis in vertebrate embryogenesis.
PLOS ONE | 2010
Douglas J. Blackiston; Tal Shomrat; Cindy L. Nicolas; Christopher Granata; Michael Levin
A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science.
Neurotherapeutics | 2015
Douglas J. Blackiston; George M. Anderson; Nikita Rahman; Clara Bieck; Michael Levin
SummaryA major goal of regenerative medicine is to restore the function of damaged or missing organs through the implantation of bioengineered or donor-derived components. It is necessary to understand the signals and cues necessary for implanted structures to innervate the host, as organs devoid of neural connections provide little benefit to the patient. While developmental studies have identified neuronal pathfinding molecules required for proper patterning during embryogenesis, strategies to initiate innervation in structures transplanted at later times or alternate locations remain limited. Recent work has identified membrane resting potential of nerves as a key regulator of growth cone extension or arrest. Here, we identify a novel role of bioelectricity in the generation of axon guidance cues, showing that neurons read the electric topography of surrounding cells, and demonstrate these cues can be leveraged to initiate sensory organ transplant innervation. Grafts of fluorescently labeled embryological eye primordia were used to produce ectopic eyes in Xenopus laevis tadpoles. Depolarization of host tissues through anion channel activation or other means led to a striking hyperinnervation of the body by these ectopic eyes. A screen of possible transduction mechanisms identified serotonergic signaling to be essential for hyperinnervation to occur, and our molecular data suggest a possible model of bioelectrical control of the distribution of neurotransmitters that guides nerve growth. Together, these results identify the molecular components of bioelectrical signaling among cells that regulates axon guidance, and suggest novel biomedical and bioengineering strategies for triggering neuronal outgrowth using ion channel drugs already approved for human use.
Science Signaling | 2015
Maria Lobikin; Daniel Lobo; Douglas J. Blackiston; Christopher J. Martyniuk; Elizabeth Tkachenko; Michael Levin
Computational modeling reveals mechanisms for the stochastic whole-body conversion of pigment cells in frogs. Driving melanocyte proliferation and invasion Melanocytes play key physiological functions; one of the easiest to see is pigmentation. In frogs, the number, distribution, and shape of melanocytes are determined by a subpopulation of cells called “instructor cells,” which are regulated by changes in membrane potential. Forced depolarization of instructor cells can result in excessive melanocyte proliferation, altered melanocyte cell shape, and abnormal migration of melanocytes into multiple tissues, which results in darkly colored tadpoles through a stochastic all-or-none process; the embryos are either normally pigmented or hyperpigmented. Lobikin et al. unraveled the molecular signaling pathway and physiological circuit that mediates this melanocyte conversion process, and they used computational approaches to explain how this all-or-none, stochastic process can occur. Experimentally induced depolarization of resting membrane potential in “instructor cells” in Xenopus laevis embryos causes hyperpigmentation in an all-or-none fashion in some tadpoles due to excess proliferation and migration of melanocytes. We showed that this stochastic process involved serotonin signaling, adenosine 3′,5′-monophosphate (cAMP), and the transcription factors cAMP response element–binding protein (CREB), Sox10, and Slug. Transcriptional microarray analysis of embryos taken at stage 15 (early neurula) and stage 45 (free-swimming tadpole) revealed changes in the abundance of 45 and 517 transcripts, respectively, between control embryos and embryos exposed to the instructor cell–depolarizing agent ivermectin. Bioinformatic analysis revealed that the human homologs of some of the differentially regulated genes were associated with cancer, consistent with the induced arborization and invasive behavior of converted melanocytes. We identified a physiological circuit that uses serotonergic signaling between instructor cells, melanotrope cells of the pituitary, and melanocytes to control the proliferation, cell shape, and migration properties of the pigment cell pool. To understand the stochasticity and properties of this multiscale signaling system, we applied a computational machine-learning method that iteratively explored network models to reverse-engineer a stochastic dynamic model that recapitulated the frequency of the all-or-none hyperpigmentation phenotype produced in response to various pharmacological and molecular genetic manipulations. This computational approach may provide insight into stochastic cellular decision-making that occurs during normal development and pathological conditions, such as cancer.
The Journal of Experimental Biology | 2013
Douglas J. Blackiston; Michael Levin
SUMMARY A major roadblock in the biomedical treatment of human sensory disorders, including blindness, has been an incomplete understanding of the nervous system and its ability to adapt to changes in sensory modality. Likewise, fundamental insight into the evolvability of complex functional anatomies requires understanding brain plasticity and the interaction between the nervous system and body architecture. While advances have been made in the generation of artificial and biological replacement components, the brains ability to interpret sensory information arising from ectopic locations is not well understood. We report the use of eye primordia grafts to create ectopic eyes along the body axis of Xenopus tadpoles. These eyes are morphologically identical to native eyes and can be induced at caudal locations. Cell labeling studies reveal that eyes created in the tail send projections to the stomach and trunk. To assess function we performed light-mediated learning assays using an automated machine vision and environmental control system. The results demonstrate that ectopic eyes in the tail of Xenopus tadpoles could confer vision to the host. Thus ectopic visual organs were functional even when present at posterior locations. These data and protocols demonstrate the ability of vertebrate brains to interpret sensory input from ectopic structures and incorporate them into adaptive behavioral programs. This tractable new model for understanding the robust plasticity of the central nervous system has significant implications for regenerative medicine and sensory augmentation technology.
Stem Cells International | 2012
Vaibhav P. Pai; Laura N. Vandenberg; Douglas J. Blackiston; Michael Levin
Consistent left-right asymmetry in organ morphogenesis is a fascinating aspect of bilaterian development. Although embryonic patterning of asymmetric viscera, heart, and brain is beginning to be understood, less is known about possible subtle asymmetries present in anatomically identical paired structures. We investigated two important developmental events: physiological controls of eye development and specification of neural crest derivatives, in Xenopus laevis embryos. We found that the striking hyperpolarization of transmembrane potential (V mem) demarcating eye induction usually occurs in the right eye field first. This asymmetry is randomized by perturbing visceral left-right patterning, suggesting that eye asymmetry is linked to mechanisms establishing primary laterality. Bilateral misexpression of a depolarizing channel mRNA affects primarily the right eye, revealing an additional functional asymmetry in the control of eye patterning by V mem. The ATP-sensitive K+ channel subunit transcript, SUR1, is asymmetrically expressed in the eye primordia, thus being a good candidate for the observed physiological asymmetries. Such subtle asymmetries are not only seen in the eye: consistent asymmetry was also observed in the migration of differentiated melanocytes on the left and right sides. These data suggest that even anatomically symmetrical structures may possess subtle but consistent laterality and interact with other developmental left-right patterning pathways.
CSH Protocols | 2012
Douglas J. Blackiston; Michael Levin
Xenopus laevis is an ideal organism in which to study the mechanisms linking genetics, the embryogenesis of the central nervous system, and the generation of cognitive behavior. Frog embryos facilitate the targeting of many pathways of importance to neuroscience via pharmacological, genetic, and surgical manipulations. A limiting factor for investigations of memory and learning has been the difficulty of eliciting learning in Xenopus. Here, we outline a simple strategy for aversive conditioning (associative learning) in Xenopus tadpoles, and present sample data using a quantitative automated analysis system. We also discuss the factors and variables that must be considered to ensure optimal learning and recall performance, for use as behavioral endpoints in any experiment.