Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas J. MacNeil is active.

Publication


Featured researches published by Douglas J. MacNeil.


FEBS Letters | 1998

Distribution of orexin receptor mRNA in the rat brain

Prashant Trivedi; Hong Yu; Douglas J. MacNeil; L.H.T Van der Ploeg; Xiao-Ming Guan

The expression pattern of mRNA encoding two orexin receptors (OX1R and OX2R) in the rat brain was examined. OX1R and OX2R exhibited marked differential distribution. Within the hypothalamus, OX1R mRNA is most abundant in the ventromedial hypothalamic nucleus whereas OX2R is predominantly expressed in the paraventricular nucleus. High levels of OX1R mRNA were also detected in tenia tecta, the hippocampal formation, dorsal raphe, and locus coeruleus. OX2R mRNA is mainly expressed in cerebral cortex, nucleus accumbens, subthalamic and paraventricular thalamic nuclei, anterior pretectal nucleus. The presence of orexin receptor mRNA in the hypothalamus is in support of its proposed role in feeding regulation. Broad central distribution of orexin receptors may indicate additional functions for orexins.


Nature | 2008

Variations in DNA elucidate molecular networks that cause disease

Yanqing Chen; Jun Zhu; Pek Yee Lum; Xia Yang; Shirly Pinto; Douglas J. MacNeil; Chunsheng Zhang; John Lamb; Stephen Edwards; Solveig K. Sieberts; Amy Leonardson; Lawrence W. Castellini; Susanna Wang; Marie-France Champy; Bin Zhang; Valur Emilsson; Sudheer Doss; Anatole Ghazalpour; Steve Horvath; Thomas A. Drake; Aldons J. Lusis; Eric E. Schadt

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase β (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.


Gene | 1992

Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector

Douglas J. MacNeil; Carolyn L. Ruby; Gabe Dezeny; Patrice H. Gibbons; Tanya MacNeil

An integration vector for gene analysis in Streptomyces has been constructed. This vector replicates in Escherichia coli, and integrates into Streptomyces by homologous recombination between a cloned fragment and the genome. To overcome methylation-specific restriction barriers, an E. coli mutant triply defective in DNA methylation was constructed as a source for the integration plasmids. The frequency of integration of pVE616 derivatives into the Streptomyces avermitilis genome was proportional to the size of the cloned DNA. Derivatives of pVE616, containing fragments from pVE650, a plasmid with a 24-kb insert of S. avermitilis DNA, were used in complementation analyses of seven S. avermitilis mutants defective in glycosylation of avermectin (Av). Three complementation groups, located in a 7-kb region, were identified. Derivatives of pVE616, containing fragments from the 18-kb of DNA adjacent to the glycosylation region, were integrated into an Av producer. Av produced from the integrants was substantially reduced, indicating that the 18 kb also encodes gene products which are involved in Av biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism

Donald J. Marsh; Drew T. Weingarth; Dawn E. Novi; Howard Y. Chen; Myrna E. Trumbauer; Airu S. Chen; Xiao-Ming Guan; Michael M. Jiang; Yue Feng; Ramon Camacho; Zhu Shen; Easter G. Frazier; Hong Yu; Joseph M. Metzger; Stephanie J. Kuca; Lauren P. Shearman; Shobhna Gopal-Truter; Douglas J. MacNeil; Alison M. Strack; D. Euan MacIntyre; Lex H.T. Van der Ploeg; Su Qian

Melanin-concentrating hormone (MCH) is a cyclic 19-aa hypothalamic neuropeptide derived from a larger prohormone precursor of MCH (Pmch), which also encodes neuropeptide EI (NEI) and neuropeptide GE (NGE). Pmch-deficient (Pmch−/−) mice are lean, hypophagic, and have an increased metabolic rate. Transgenic mice overexpressing Pmch are hyperphagic and develop mild obesity. Consequently, MCH has been implicated in the regulation of energy homeostasis. The MCH 1 receptor (MCH1R) is one of two recently identified G protein-coupled receptors believed to be responsible for the actions of MCH. We evaluated the physiological role of MCH1R by generating MCH1R-deficient (Mch1r−/−) mice. Mch1r−/− mice have normal body weights, yet are lean and have reduced fat mass. Surprisingly, Mch1r−/− mice are hyperphagic when maintained on regular chow, and their leanness is a consequence of hyperactivity and altered metabolism. Consistent with the hyperactivity, Mch1r−/− mice are less susceptible to diet-induced obesity. Importantly, chronic central infusions of MCH induce hyperphagia and mild obesity in wild-type mice, but not in Mch1r−/− mice. We conclude that MCH1R is a physiologically relevant MCH receptor in mice that plays a role in energy homeostasis through multiple actions on locomotor activity, metabolism, appetite, and neuroendocrine function.


Molecular and Cellular Biology | 2002

Neither Agouti-Related Protein nor Neuropeptide Y Is Critically Required for the Regulation of Energy Homeostasis in Mice

Su Qian; Howard Y. Chen; Drew T. Weingarth; Myrna E. Trumbauer; Dawn E. Novi; Xiao-Ming Guan; Hong Yu; Zhu Shen; Yue Feng; Easter G. Frazier; Airu Chen; Ramon Camacho; Lauren P. Shearman; Shobhna Gopal-Truter; Douglas J. MacNeil; Lex H.T. Van der Ploeg; Donald J. Marsh

ABSTRACT Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by α-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp−/−) mice to examine the physiological role of AgRP. Agrp−/− mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp−/− mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp−/− mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp−/−;Npy−/−) mice to determine whether NPY or AgRP plays a compensatory role in Agrp−/− or NPY-deficient (Npy−/−) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp−/−;Npy−/− mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.


Journal of Biological Chemistry | 1996

Cloning and Expression of a Novel Neuropeptide Y Receptor

David H. Weinberg; D.J.S. Sirinathsinghji; Carina P. Tan; Lin-Lin Shiao; Nancy R. Morin; Michael Rigby; Robert Heavens; Davida R. Rapoport; Marvin L. Bayne; Margaret A. Cascieri; Catherine D. Strader; David L. Linemeyer; Douglas J. MacNeil

The neuropeptide Y family of peptides, which includes neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), are found in the central and peripheral nervous system and display a wide array of biological activities. These actions are believed to be mediated through pharmacologically distinct G protein-coupled receptors, and, to date, three members of the NPY receptor family have been cloned. In this study we describe the cloning and expression of a novel NPY receptor from mouse genomic DNA. This receptor, designated NPY Y5, shares 60% amino acid identity to the murine NPY Y1 receptor. The pharmacology of this novel receptor resembles that of the NPY Y1 receptor and is distinct from that described for the NPY Y2, Y3, and Y4 receptors. In situ hybridization of mouse brain sections reveals expression of this receptor within discrete regions of the hypothalamus including the suprachiasmatic nucleus, anterior hypothalamus, bed nucleus stria terminalis, and the ventromedial nucleus with no localization apparent elsewhere in the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R

Andreas Sailer; Hideki Sano; Zhizhen Zeng; Terrence P. McDonald; Jie Pan; Sheng Shung Pong; Scott D. Feighner; Carina P. Tan; Takehiro Fukami; Hisashi Iwaasa; Donna L. Hreniuk; Nancy R. Morin; Sharon J. Sadowski; Makoto Ito; Masahiko Ito; Alka Bansal; Betty Ky; David J. Figueroa; Qingping Jiang; Christopher P. Austin; Douglas J. MacNeil; Akane Ishihara; Masaki Ihara; Akio Kanatani; Lex H.T. Van der Ploeg; Andrew D. Howard; Qingyun Liu

Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive Gαq coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2–16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.


Nature Genetics | 2009

Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks

Xia Yang; Joshua L. Deignan; Hongxiu Qi; Jun Zhu; Su Qian; Judy Zhong; Gevork Torosyan; Sana Majid; Brie Falkard; Robert Kleinhanz; Jenny C Karlsson; Lawrence W. Castellani; Sheena Mumick; Kai Wang; Tao Xie; Michael Coon; Chunsheng Zhang; Daria Estrada-Smith; Charles R. Farber; Susanna S. Wang; Atila van Nas; Anatole Ghazalpour; Bin Zhang; Douglas J. MacNeil; John Lamb; Katrina M. Dipple; Marc L. Reitman; Margarete Mehrabian; Pek Yee Lum; Eric E. Schadt

A principal task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription and phenotypic information. Here we have validated our method through the characterization of transgenic and knockout mouse models of genes predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being newly confirmed, resulted in significant changes in obesity-related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high-confidence prediction of causal genes and identification of pathways and networks involved.


Gene | 1992

Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase

Douglas J. MacNeil; James Occi; Tanya MacNeil; Patrice H. Gibbons; Carolyn L. Ruby; Susan J. Danis

The avermectin (Av) polyketide synthase (PKS) and erythromycin (Er) PKS are encoded by modular repeats of DNA, but the genetic organization of the modules encoding Av PKS is more complex than Er PKS. Sequencing of several related DNA fragments from Streptomyces avermitilis that are part of the Av biosynthetic gene cluster, revealed that they encode parts of large multifunctional PKS proteins. The Av PKS proteins show strong similarity to each other, as well as similarity to Er PKS proteins [Donadio et al., Science 252 (1991) 675-679] and fatty acid synthases. Partial DNA sequencing of the 65-kb region containing all the related sequence elements in the avr genes provides evidence for twelve modular repeats encoding FAS-like domains. The genes encoding the Av PKS are organized as two sets of six modular repeats which are convergently transcribed.


European Journal of Pharmacology | 2002

The role of melanocortins in body weight regulation: opportunities for the treatment of obesity

Douglas J. MacNeil; Andrew D. Howard; Xiao-Ming Guan; Tung M. Fong; Ravi P. Nargund; Maria A. Bednarek; Mark T. Goulet; David H. Weinberg; Alison M. Strack; Donald J. Marsh; Howard Y. Chen; Chun-Pyn Shen; Airu S. Chen; Charles Rosenblum; Tanya MacNeil; Michael R. Tota; Euan MacIntyre; Lex H.T. Van der Ploeg

Five G-protein-coupled melanocortin receptors (MC(1)-MC(5)) are expressed in mammalian tissues. The melanocortin receptors support diverse physiological functions, including the regulation of hair color, adrenal function, energy homeostasis, feed efficiency, sebaceous gland lipid production and immune and sexual function. The melanocortins (adrenocorticotropic hormone (ACTH), alpha-melanocyte-stimulating hormone (alpha-MSH), beta-MSH and gamma-MSH) are agonist peptide ligands for the melanocortin receptors and these peptides are processed from the pre-prohormone proopiomelanocortin (POMC). Peptide antagonists for the melanocortin MC(1), MC(3) and MC(4) receptors include agouti-related protein (AgRP) and agouti. Diverse lines of evidence, including genetic and pharmacological data obtained in rodents and humans, support a role for the melanocortin MC(3) and MC(4) receptors in the regulation of energy homeostasis. Recent advances in the development of potent and selective peptide and non-peptide melanocortin receptor ligands are anticipated to help unravel the roles for the melanocortin receptors in humans and to accelerate the clinical use of small molecule melanocortin mimetics.

Collaboration


Dive into the Douglas J. MacNeil's collaboration.

Top Co-Authors

Avatar

Akane Ishihara

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hisashi Iwaasa

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge