Douglas J. Pon
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas J. Pon.
Brain Research | 2001
Sonia Lamontagne; Emily Meadows; Pauline Luk; Denis Normandin; Eric S. Muise; Louise Boulet; Douglas J. Pon; Annette Robichaud; George S. Robertson; Kathleen M. Metters; François Nantel
Pre-clinical and clinical studies are currently underway to evaluate the potential of phosphodiesterase-4 (PDE4) inhibitors for the treatment of chronic obstructive pulmonary disease and other inflammatory conditions of the airways. The most common side effect associated with this class of compounds is emesis. The squirrel monkey provides a model for evaluating the efficacy of PDE4 inhibitors and their emetic potential. The distribution of three PDE4 isoforms (A, C and D) has been investigated in the squirrel monkey medulla and nodose ganglion to determine which isoform(s) could be responsible for the emetic adverse effects. The distribution of PDE4 isoforms was delineated using immunohistochemistry with antibodies specific for PDE4A, PDE4C and PDE4D and by in situ hybridization with isoform-selective riboprobes. PDE4A was present in the medulla where expression was mostly restricted to glial cells and the vasculature. PDE4C was not detected in either the medulla or nodose ganglion. Finally, the PDE4D isoform was localized to neurons in the nodose ganglion and found through many structures of medulla including the area postrema, neurons of the nucleus tractus solitarius and locus coeruleus. These data are consistent with a role for PDE4D in the emetic response.
European Journal of Pharmacology | 1993
Douglas J. Pon; Matjaz Flezar; Dionne L. Litster; Seymour Heisler
We have investigated the cellular signalling pathway by which vasopressin stimulates a Ca2(+)-dependent Cl- conductance and the effects of two known Cl- channel blockers in cultured rat A7r5 aortic smooth muscle cells using anion efflux and fluorescent Ca2+ imaging studies. Addition of vasopressin (100 nM) to A7r5 cells enhanced 125I (Cl- substitute) efflux from the cells through a V1 receptor-mediated pathway. Maximal increases in the rate of efflux were observed 1 min following addition of vasopressin (4-fold above basal levels). Activation of the V1 pathway was demonstrated by an increase in inositol trisphosphate (IP3) formation and lack of cAMP accumulation by the cells following the addition of vasopressin. Fluorescent ratio imaging with fura-2 revealed that addition of vasopressin to the cells results in an increase of [Ca2+]i which peaks within 20 s and does not return to resting levels during the 100 s observation period. The addition of a Ca2+ ionophore mimicked the vasopressin-induced efflux from the cells. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and a chloro-substituted compound (cpd 149) inhibited the vasopressin-stimulated 125I efflux from the cells. The concentrations of NPPB and cpd 149 required to inhibit 125I efflux from the cells were similar to those which also attenuated vasopressin-induced Ca2+ transients in the cells. NPPB and cpd 149 had no effects on the ionomycin stimulated efflux. The mechanism(s) by which cpd 149 exerts its effect on stimulated efflux was examined by measuring its action on vasopressin-induced changes in IP3. Compound 149 inhibited IP3 generation in response to vasopressin.(ABSTRACT TRUNCATED AT 250 WORDS)
Cell Biochemistry and Biophysics | 1998
Douglas J. Pon; M. Plant; J. Tkach; Louise Boulet; E. Muise; R. A. Allen; Ian W. Rodger
A CHO-K1 cell line stably expressing a recombinant full-length human PDE-IVa (HSPDE4A4B) enzyme was established under hygromycin B selection. Full-length expression of the protein was determined by Western blot analysis, which revealed the presence of a 125-kDa immunoreactive band using rabbit anti-PDE-IVa antibodies. The potency of inhibitor compounds was examined by their ability to increase cAMP in the whole-cell, and by their ability to inhibit cAMP hydrolysis in a 100,000g supernatant (soluble enzyme preparation) obtained from the same cell line. Inhibition of the expressed PDE-IVa activity by selective PDE-IV inhibitors—(R) and (S)-rolipram, RS 14203, and CDP 840—at 100 nM substrate demonstrated that RS 14203 and CDP 840 were the most potent with IC50=9 nM, followed by (R)-rolipram (IC50=110 nM) and (S)-rolipram (IC50=420 nM). The rank order of potencies of the inhibitors in elevating cAMP in the whole-cell assay was quite different from that on the soluble enzyme. RS 14203 was still the most potent compound in elevating cAMP. Moreover, the relative rank order of potencies between CDP 840 and (R)-rolipram changed dramatically, such that (R)-rolipram was more potent than CDP 840 = (S)-rolipram. An apparent 30-fold stereoselectivity between (R)- and (S)-rolipram was also noted. The whole-cell rank order of potencies was also maintained when PKA activity ratios were measured in place of cAMP levels. The ability of the compounds to elevate cAMP in the stable CHO-K1 cells appeared to track better with the potency of the compounds against the high-affinity (Sr) conformer of the enzyme rather than the low-affinity catalytic state.
Experimental Lung Research | 1996
Terry Gordon; Christine Nadziejko; Matthew Plant; Ian W. Rodger; Douglas J. Pon
This study examined the production of stored mucosubtances in rats after repeated exposure to aerosolized endotoxin, a common contaminant of bioaerosols. Male Fischer 344 rats were exposed to aerosolized saline (sham control) or endotoxin (target concentrations of 0.05, 0.5, and 5.0 micrograms/m3) for 3 h/day, 5 days/week for 4 weeks. Following the final exposure, the left lung of each animal was lavaged and the right lung and nasal cavity were fixed with buffered formalin. Morphometric examination of Alcian blue/Periodic acid Schiffs-stained (AB/PAS) lung sections demonstrated dose-dependent increases in stored intraepithelial mucosubstances in the intrapulmonary airways of endotoxin-exposed rats. Threefold and eightfold increases in stored mucosubstances were observed in generation 5 airways of animals exposed to 0.5 or 5.0 microgram/m3 endotoxin, respectively (p < .05). This mucous cell metaplasia in the intrapulmonary airways was not accompanied by evidence of lung inflammation or increased AB/PAS-staining high molecular weight material in lavage fluid. Furthermore, despite significant deposition of endotoxin aerosols (mass median aerodynamic diameter of 1.9 microns) in the nasal cavity, no significant changes in stored mucosubstances were observed in the nasal septum. In animals repeatedly exposed to 5.0 micrograms/m3 endotoxin and allowed to recover for 1 month, stored mucosubstances in the intrapulmonary airway were still more than fivefold greater than control values. Thus, in rats, repeated exposure to inhaled endotoxin produced a persistent mucous cell metaplasia only in the intrapulmonary airways.
Journal of Medicinal Chemistry | 2003
Richard W. Friesen; Yves Ducharme; Richard G. Ball; Marc Blouin; Louise Boulet; Bernard Cote; Richard Frenette; Mario Girard; Daniel Guay; Zheng Huang; Thomas R. Jones; Joseph J. Lynch; Joseph A. Mancini; Evelyn Martins; Paul Masson; Eric S. Muise; Douglas J. Pon; Peter K. S. Siegl; Angela Styhler; Nancy N. Tsou; Mervyn J. Turner; Robert N. Young; Yves Girard
American Journal of Respiratory and Critical Care Medicine | 1995
Stephanie A. Shore; Lester Kobzik; Nancy C. Long; William A. Skornik; C J Van Staden; Louise Boulet; Ian W. Rodger; Douglas J. Pon
Biochemical Pharmacology | 2002
Eric S. Muise; Ian C Chute; David Claveau; Paul Masson; Louise Boulet; Lydia Tkalec; Douglas J. Pon; Yves Girard; Richard Frenette; Joseph A. Mancini
American Journal of Respiratory Cell and Molecular Biology | 1995
C. Savoie; M. Plant; M. Zwikker; C. J. Van Staden; Louise Boulet; Chi-Chung Chan; Ian W. Rodger; Douglas J. Pon
Canadian Journal of Physiology and Pharmacology | 1994
Douglas J. Pon; Carlo Van Staden; Louise Boulet; Ian W. Rodger
American Journal of Respiratory Cell and Molecular Biology | 1994
Douglas J. Pon; C. J. Van Staden; Ian W. Rodger