Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas K. Atchison is active.

Publication


Featured researches published by Douglas K. Atchison.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Acute activation of the calcium-sensing receptor inhibits plasma renin activity in vivo

Douglas K. Atchison; M. Cecilia Ortiz-Capisano; William H. Beierwaltes

In vitro, the renin-secreting juxtaglomerular cells express the calcium-sensing receptor, and its activation with the calcimimetic cinacalcet inhibits renin release. To test whether the activation of calcium-sensing receptor similarly inhibits plasma renin activity (PRA) in vivo, we hypothesized that the calcium-sensing receptor is expressed in juxtaglomerular cells in vivo, and acutely administered cinacalcet would inhibit renin activity in anesthetized rats. Since cinacalcet inhibits parathyroid hormone, which may stimulate renin activity, we sought to determine whether cinacalcet inhibits renin activity by decreasing parathyroid hormone. Lastly, we hypothesized that chronically administered cinacalcet would inhibit basal and stimulated renin in conscious rats. Calcium-sensing receptors and renin were localized in the same juxtaglomerular cells using immunofluorescence in rat cortical slices fixed in vivo. Cinacalcet was administered acutely via intravenous bolus in anesthetized rats and chronically in conscious rats by oral gavage. Acute administration of cinacalcet decreased basal renin activity from 13.6 ± 2.4 to 6.1 ± 1.1 ng ANG I·ml(-1)·h(-1) (P < 0.001). Likewise, cinacalcet decreased furosemide-stimulated renin from 30.6 ± 2.3 to 21.3 ± 2.3 ng ANG I·ml(-1)·h(-1) (P < 0.001). In parathyroidectomized rats, cinacalcet decreased renin activity from 9.3 ± 1.3 to 5.2 ± 0.5 ng ANG I·ml(-1)·h(-1) (P < 0.05) similar to sham-operated controls (13.5 ± 2.2 to 6.6 ± 0.8 ng ANG I·ml(-1)·h(-1), P < 0.05). Chronic administration of cinacalcet over 7 days had no significant effect on PRA under basal or stimulated conditions. In conclusion, calcium-sensing receptors are expressed in juxtaglomerular cells in vivo, and acute activation of these receptors with cinacalcet inhibits PRA in anesthetized rats, independent of parathyroid hormone.


Pflügers Archiv: European Journal of Physiology | 2013

The influence of extracellular and intracellular calcium on the secretion of renin

Douglas K. Atchison; William H. Beierwaltes

Changes in plasma, extracellular, and intracellular calcium can affect renin secretion from the renal juxtaglomerular (JG) cells. Elevated intracellular calcium directly inhibits renin release from JG cells by decreasing the dominant second messenger intracellular cyclic adenosine monophosphate (cAMP) via actions on calcium-inhibitable adenylyl cyclases and calcium-activated phosphodiesterases. Increased extracellular calcium also directly inhibits renin release by stimulating the calcium-sensing receptor (CaSR) on JG cells, resulting in parallel changes in the intracellular environment and decreasing intracellular cAMP. In vivo, acutely elevated plasma calcium inhibits plasma renin activity (PRA) via parathyroid hormone-mediated elevations in renal cortical interstitial calcium that stimulate the JG cell CaSR. However, chronically elevated plasma calcium or CaSR activation may actually stimulate PRA. This elevation in PRA may be a compensatory mechanism resulting from calcium-mediated polyuria. Thus, changing the extracellular calcium in vitro or in vivo results in inversely related acute changes in cAMP, and therefore renin release, but chronic changes in calcium may result in more complex interactions dependent upon the duration of changes and the integration of the body’s response to these changes.


Hypertension | 2011

Hypercalcemia Reduces Plasma Renin via Parathyroid Hormone, Renal Interstitial Calcium, and the Calcium-Sensing Receptor

Douglas K. Atchison; Pamela Harding; William H. Beierwaltes

Acute hypercalcemia inhibits plasma renin activity (PRA). How this occurs is unknown. We hypothesized that acute hypercalcemia inhibits PRA via the calcium-sensing receptor because of parathyroid hormone-mediated increases in renal cortical interstitial calcium via TRPV5. To test our hypothesis, acute in vivo protocols were run in sodium-restricted, anesthetized rats. TRPV5 messenger RNA expression was measured with real-time quantitative RT-PCR. Acute hypercalcemia significantly decreased PRA by 37% from 32.0±3.3 to 20.3±2.6 ng of angiotensin I per milliliter per hour (P<0.001). Acute hypercalcemia also significantly increased renal cortical interstitial calcium by 38% (1.73±0.06 mmol/L) compared with control values (1.25±0.05 mmol/L; P<0.001). PRA did not decrease in hypercalcemia in the presence of a calcium-sensing receptor antagonist, Ronacaleret (22.8±4.3 versus 21.6±3.6 ng of angiotensin I per milliliter per hour). Increasing plasma calcium did not decrease PRA in parathyroidectomized rats (22.5±2.6 versus 22.0±3.0 ng of angiotensin I per milliliter per hour). Parathyroidectomized rats were unable to increase their renal cortical interstitial calcium in response to hypercalcemia (1.01±0.11 mmol/L). Acutely replacing plasma parathyroid hormone levels did not modify the hypercalcemic inhibition of PRA in parathyroid-intact rats (39.1±10.9 versus 16.3±3.2 ng of angiotensin I per milliliter per hour; P<0.05). Renal cortical TRPV5 messenger RNA expression decreased by 67% in parathyroidectomized (P<0.001) compared with intact rats. Our data suggest that acute hypercalcemia inhibits PRA via the calcium-sensing receptor because of parathyroid hormone–mediated increases in renal cortical interstitial calcium via TRPV5.


American Journal of Physiology-renal Physiology | 2013

Anandamide inhibits transport-related oxygen consumption in the loop of Henle by activating CB1 receptors.

Guillermo B. Silva; Douglas K. Atchison; Luis I. Juncos; Nestor Horacio Garcia

The energy required for active Na chloride reabsorption in the thick ascending limb (TAL) depends on oxygen consumption and oxidative phosphorylation (OXP). In other cells, Na transport is inhibited by the endogenous cannabinoid anandamide through the activation of the cannabinoid receptors (CB) type 1 and 2. However, it is unclear whether anandamide alters TAL transport and the mechanisms that could be involved. We hypothesized that anandamide inhibits TAL transport via activation of CB1 receptors and NO. For this, we measured oxygen consumption (Q(O(2))) in TAL suspensions to monitor the anandamide effects on transport and OXP. Anandamide reduced Q(O(2)) in a concentration-dependent manner. During Na-K-2Cl cotransport and Na/H exchange inhibition, anandamide did not inhibit TAL Q(O(2)). To test the role of the cannabinoid receptors, we used specific agonists and antagonists of CB1 and CB2 receptors. The CB1-selective agonist WIN55212-2 reduced Q(O(2)) in a concentration-dependent manner. Also, the CB1 receptor antagonist rimonabant blocked the effect of anandamide on Q(O(2)). In contrast, the CB2-selective agonist JHW-133 had no effect on Q(O(2)), while the CB2 receptor antagonist AM-630 failed to block the anandamide effects on Q(O(2)). To confirm these results, we measured CB1 and CB2 receptor expression and only CB1 expression was detected. Because CB1 receptors are strong nitric oxide synthase (NOS) stimulators and NO inhibits transport in TALs, we evaluated the role of NO. Anandamide stimulated NO production and the NOS inhibitor N(G)-nitro-L-arginine methyl ester blocked the anandamide effects on Q(O(2)). We conclude that anandamide inhibits TAL Na transport-related Q(O(2)) via activation of CB1 receptor and NOS.


American Journal of Physiology-renal Physiology | 2013

Adenosine inhibits renin release from juxtaglomerular cells via an A1 receptor-TRPC-mediated pathway

M. Cecilia Ortiz-Capisano; Douglas K. Atchison; Pamela Harding; Robert D. Lasley; William H. Beierwaltes

Renin is synthesized and released from juxtaglomerular (JG) cells. Adenosine inhibits renin release via an adenosine A1 receptor (A1R) calcium-mediated pathway. How this occurs is unknown. In cardiomyocytes, adenosine increases intracellular calcium via transient receptor potential canonical (TRPC) channels. We hypothesized that adenosine inhibits renin release via A1R activation, opening TRPC channels. However, higher concentrations of adenosine may stimulate renin release through A2R activation. Using primary cultures of isolated mouse JG cells, immunolabeling demonstrated renin and A1R in JG cells, but not A2R subtypes, although RT-PCR indicated the presence of mRNA of both A2AR and A2BR. Incubating JG cells with increasing concentrations of adenosine decreased renin release. Different concentrations of the adenosine receptor agonist N-ethylcarboxamide adenosine (NECA) did not change renin. Activating A1R with 0.5 μM N6-cyclohexyladenosine (CHA) decreased basal renin release from 0.22 ± 0.05 to 0.14 ± 0.03 μg of angiotensin I generated per milliliter of sample per hour of incubation (AngI/ml/mg prot) (P < 0.03), and higher concentrations also inhibited renin. Reducing extracellular calcium with EGTA increased renin release (0.35 ± 0.08 μg AngI/ml/mg prot; P < 0.01), and blocked renin inhibition by CHA (0.28 ± 0.06 μg AngI/ml/mg prot; P < 0. 005 vs. CHA alone). The intracellular calcium chelator BAPTA-AM increased renin release by 55%, and blocked the inhibitory effect of CHA. Repeating these experiments in JG cells from A1R knockout mice using CHA or NECA demonstrated no effect on renin release. However, RT-PCR showed mRNA from TRPC isoforms 3 and 6 in isolated JG cells. Adding the TRPC blocker SKF-96365 reversed CHA-mediated inhibition of renin release. Thus A1R activation results in a calcium-dependent inhibition of renin release via TRPC-mediated calcium entry, but A2 receptors do not regulate renin release.


American Journal of Physiology-renal Physiology | 2013

Vitamin D Increases Plasma Renin Activity Independently of Plasma Ca2+ via Hypovolemia and β-Adrenergic Activity

Douglas K. Atchison; Pamela Harding; William H. Beierwaltes

1, 25-Dihydroxycholechalciferol (calcitriol) and 19-nor-1, 25-dihydroxyvitamin D2 (paricalcitol) are vitamin D receptor (VDR) agonists. Previous data suggest VDR agonists may actually increase renin-angiotensin activity, and this has always been assumed to be mediated by hypercalcemia. We hypothesized that calcitriol and paricalcitol would increase plasma renin activity (PRA) independently of plasma Ca(2+) via hypercalciuria-mediated polyuria, hypovolemia, and subsequent increased β-adrenergic sympathetic activity. We found that both calcitriol and paricalcitol increased PRA threefold (P < 0.01). Calcitriol caused hypercalcemia, but paricalcitol did not. Both calcitriol and paricalcitol caused hypercalciuria (9- and 7-fold vs. control, P < 0.01) and polyuria (increasing 2.6- and 2.2-fold vs. control, P < 0.01). Paricalcitol increased renal calcium-sensing receptor (CaSR) expression, suggesting a potential cause of paricalcitol-mediated hypercalciuria and polyuria. Volume replacement completely normalized calcitriol-stimulated PRA and lowered plasma epinephrine by 43% (P < 0.05). β-Adrenergic blockade also normalized calcitriol-stimulated PRA. Cyclooxygenase-2 inhibition had no effect on calcitriol-stimulated PRA. Our data demonstrate that vitamin D increases PRA independently of plasma Ca(2+) via hypercalciuria, polyuria, hypovolemia, and increased β-adrenergic activity.


American Journal of Physiology-endocrinology and Metabolism | 2012

Parathyroid hormone-related protein stimulates plasma renin activity via its anorexic effects on sodium chloride intake

Douglas K. Atchison; Elizabeth P Westrick; David L. Szandzik; Kevin L. Gordish; William H. Beierwaltes

Parathyroid hormone-related protein (PTHrP) increases renin release from isolated perfused kidneys and may act as an autacoid regulator of renin secretion, but its effects on renin in vivo are unknown. In vivo, PTHrP causes hypercalcemia and anorexia, which may affect renin. We hypothesized that chronically elevated PTHrP would increase plasma renin activity (PRA) indirectly via its anorexic effects, reducing sodium chloride (NaCl) intake and causing NaCl restriction. We infused male Sprague-Dawley rats with the vehicle (control) or 125 μg PTHrP/day (PTHrP) via subcutaneous osmotic minipumps for 5 days. To replenish NaCl consumption, a third group of PTHrP-infused rats received 0.3% NaCl (PTHrP + NaCl) in their drinking water. PTHrP increased PRA from a median control value of 3.68 to 18.4 ng Ang I·ml(-1)·h(-1) (P < 0.05), whereas the median PTHrP + NaCl PRA value was normal (7.82 ng Ang I·ml(-1)·h(-1), P < 0.05 vs. PTHrP). Plasma Ca(2+) (median control: 10.2 mg/dl; PTHrP: 13.7 mg/dl; PTHrP + NaCl: 14.1 mg/dl; P < 0.05) and PTHrP (median control: 0.03 ng/ml; PTHrP: 0.12 ng/ml; PTHrP + NaCl: 0.15 ng/ml; P < 0.05) were elevated in PTHrP- and PTHrP + NaCl-treated rats. Body weights and caloric consumption were lower in PTHrP- and PTHrP + NaCl-treated rats. NaCl consumption was lower in PTHrP-treated rats (mean Na(+): 28.5 ± 4.1 mg/day; mean Cl(-): 47.8 mg/day) compared with controls (Na(+): 67.3 ± 2.7 mg/day; Cl(-): 112.8 ± 4.6 mg/day; P < 0.05). NaCl consumption was comparable with control in the PTHrP + NaCl group; 0.3% NaCl in the drinking water had no effect on PRA in normal rats. Thus, our data support the hypothesis that PTHrP increases PRA via its anorexic effects, reducing NaCl intake and causing NaCl restriction.


Integrated Blood Pressure Control | 2014

Recruited renin-containing renal microvascular cells demonstrate the calcium paradox regulatory phenotype

Spencer MacGriff; Richard E Woo; M. Cecilia Ortiz-Capisano; Douglas K. Atchison; William H. Beierwaltes

Renin is the critical regulatory enzyme for production of angiotensin (Ang)-II, a potent vasoconstrictor involved in regulating blood pressure and in the pathogenesis of hypertension. Chronic sodium deprivation enhances renin secretion from the kidney, due to recruitment of additional cells from the afferent renal microvasculature to become renin-producing rather than just increasing release from existing juxtaglomerular (JG) cells. JG cells secrete renin inversely proportional to extra- and intracellular calcium, a unique phenomenon characteristic of the JG regulatory phenotype known as the “calcium paradox.” It is not known if renin secreted from recruited renin-containing cells is regulated similarly to native JG cells, and therefore acquires this JG cell phenotype. We hypothesized that non-JG cells in renal microvessels recruited to produce renin in response to chronic dietary sodium restriction would demonstrate the calcium paradox, characteristic of the JG cell phenotype. Histology showed recruitment of upstream arteriolar renin in response to sodium restriction compared to normal-diet rats. Renin fluorescence intensity increased 53% in cortices of sodium-restricted rats (P<0.001). We measured renin release from rat afferent microvessels, isolated using iron oxide nanopowder and incubated in either normal or low-calcium media. Basal renin release from normal sodium-diet rat microvessels in normal calcium media was 298.1±44.6 ng AngI/mL/hour/mg protein, and in low-calcium media increased 39% to 415.9±71.4 ng AngI/mL/hour/mg protein (P<0.025). Renin released from sodium-restricted rat microvessels increased 50% compared to samples from normal-diet rats (P<0.04). Renin release in normal calcium media was 447.0±54.3 ng AngI/mL/hour/mg protein, and in low-calcium media increased 36% to 607.6±96.1 ng AngI/mL/hour/mg protein (P<0.05). Thus, renin-containing cells recruited in the afferent microvasculature not only express and secrete renin but demonstrate the calcium paradox, suggesting renin secretion from recruited renin-containing cells share the JG phenotype for regulating renin secretion.


American Journal of Physiology-renal Physiology | 2012

Parathyroid hormone stimulates juxtaglomerular cell cAMP accumulation without stimulating renin release

Douglas K. Atchison; Pamela Harding; M. Cecilia Ortiz-Capisano; Edward L. Peterson; William H. Beierwaltes

Parathyroid hormone (PTH) is positively coupled to the generation of cAMP via its actions on the PTH1R and PTH2R receptors. Renin secretion from juxtaglomerular (JG) cells is stimulated by elevated intracellular cAMP, and every stimulus that increases renin secretion is thought to do so via increasing cAMP. Thus we hypothesized that PTH increases renin release from primary cultures of mouse JG cells by elevating intracellular cAMP via the PTH1R receptor. We found PTH1R, but not PTH2R, mRNA expressed in JG cells. While PTH increased JG cell cAMP content from (log(10) means ± SE) 3.27 ± 0.06 to 3.92 ± 0.12 fmol/mg protein (P < 0.001), it did not affect renin release. The PTH1R-specific agonist, parathyroid hormone-related protein (PTHrP), also increased JG cell cAMP from 3.13 ± 0.09 to 3.93 ± 0.09 fmol/mg protein (P < 0.001), again without effect on renin release. PTH2R receptor agonists had no effect on cAMP or renin release. PTHrP increased cAMP in the presence of both low and high extracellular calcium from 3.31 ± 0.17 to 3.83 ± 0.20 fmol/mg protein (P < 0.01) and from 3.29 ± 0.18 to 3.63 ± 0.22 fmol/mg protein (P < 0.05), respectively, with no effect on renin release. PTHrP increased JG cell cAMP in the presence of adenylyl cyclase-V inhibition from 2.85 ± 0.17 to 3.44 ± 0.14 fmol/mg protein (P < 0.001) without affecting renin release. As a positive control, forskolin increased JG cell cAMP from 3.39 ± 0.13 to 4.48 ± 0.07 fmol/mg protein (P < 0.01) and renin release from 2.96 ± 0.10 to 3.29 ± 0.08 ng ANG I·mg prot(-1)·h(-1) (P < 0.01). Thus PTH increases JG cell cAMP via non-calcium-sensitive adenylate cyclases without affecting renin release. These data suggest compartmentalization of cAMP signaling in JG cells.


Archive | 2011

Renin-Angiotensin-Aldosterone System Hypercalcemia Reduces Plasma Renin via Parathyroid Hormone, Renal Interstitial Calcium, and the Calcium-Sensing Receptor

Douglas K. Atchison; Pamela Harding; William H. Beierwaltes

Collaboration


Dive into the Douglas K. Atchison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillermo B. Silva

Catholic University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Luis I. Juncos

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Nestor Horacio Garcia

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge