Douglas K. McCarty
Chevron Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas K. McCarty.
Clays and Clay Minerals | 2006
Oladipo Omotoso; Douglas K. McCarty; Stephen Hillier; Reinhard Kleeberg
Details of the quantitative techniques successfully applied to artificial rock mixtures distributed for the third Clay Minerals Society Reynolds Cup (RC) contest are presented. Participants each received three samples, two containing 17 minerals each and a third containing ten minerals. The true composition of the samples was unknown to all participants during the contest period. The results submitted were ranked by summing the deviations from the actual compositions (bias). The top three finishers used mainly X-ray diffraction (XRD) for identification and quantification. The winner obtained an average bias of 11.3% per sample by using an internal standard and modified single-line reference intensity ratio (RIR) method based on pure mineral standards. Full-pattern fitting by genetic algorithm was used to measure the integrated intensity of the diagnostic single-line reflections chosen for quantification. Elemental-composition optimization was used separately to constrain phase concentrations that were uncertain because the reference mineral standards were lacking or not ideal. Cation exchange capacity, oriented-sample XRD analysis, and thermogravimetric analysis were also used as supplementary techniques. The second-place finisher obtained an average bias of 13.9%, also by using an RIR method, but without an added internal standard and with intensity measured by whole-pattern fitting. The third-place finisher, who obtained an average bias of 15.3%, used the Rietveld method for quantification and identification of minor phases (using difference plots). This participant also used scanning electron microscopy (with X-ray microanalysis) to identify minor components and verify the composition of structures used in Rietveld analysis. As in the previous contests, successful quantification appears to be more dependent on analyst experience than on the analytical technique or software used.
Clays and Clay Minerals | 2006
Andrew C. Aplin; Ingo F. Matenaar; Douglas K. McCarty; Ben A. van der Pluijm
We report on how the effects of mechanical compaction and clay mineral diagenesis have affected the alignment of phyllosilicates in a suite of Miocene-Pliocene mudstones buried to sub-seabed depths of between 1.8 and 5.8 km in the deep-water Gulf of Mexico. Mechanical compaction has reduced the porosity of the samples to 15% at 5 km, with modal pore sizes between 10 and 20 nm. High-resolution X-ray texture goniometry data show that the intense mechanical compaction has not resulted in a strongly aligned phyllosilicate fabric. The muds were apparently deposited with a weak or isotropic phyllosilicate fabric which was not substantially realigned by mechanical compaction. Unusually, X-ray diffraction of <0.2 µm separates shows that: (1) there is no illitization trend between 90 and 120°C; and (2) discrete smectite persists to ∼120°C, coexisting with R1 I-S or R0 I-S with 30–40% expandable layers. Between 120 and 130°C, discrete smectite disappears and the expandability of I-S decreases to ∼25–30%. We propose a two-stage diagenetic process involving (1) the alteration of volcanic glass to smectite and (2) the illitization of smectite and I-S; the alteration of glass results in smectite without a preferred orientation and retards the illitization reaction. We suggest that the lack of a strongly aligned phyllosilicate fabric reflects the apparently limited extent of illitization, and thus recrystallization, to which these mudstones have been subjected.
Clays and Clay Minerals | 2008
Jan Srodon; Douglas K. McCarty
The total specific surface area (TSSA) and smectitic layer charge (Qs) calculated from the structural formulae and unit-cell dimensions of 12 pure smectite samples were used as a reference in the design and evaluation of TSSA and Qs measurement techniques based on cation exchange capacity (CEC), H2O retention at 47% RH, and ethylene glycol monoethyl ether (EGME) retention. A thermogravimetric analysis-mass spectrometry (TGA-MS) technique was used to study the release of H2O from smectite on heating, and to introduce a correction for H2O remaining in the smectite after heating to 110°C, because the sample weight at this temperature has been used routinely as a reference in CEC and EGME sorption measurements. A temperature of 200°C was found to be the optimum reference for such measurements.A good agreement between Qs from the structural formula and from CEC was obtained when this correction was applied. The TSSA of smectite was measured with similar accuracy (mean error of ±5–7%) by three techniques: (1) using mean H2O coverage; (2) using mean EGME coverage; and (3) using a combination of H2O coverage and CEC. A reduction of the mean error from 5–7% to 4% can be obtained by averaging these measurements, and a further reduction to 3% by introducing corrections for the dependence of H2O and EGME coverage on layer charge. The study demonstrates that Ca2+-smectite samples at 47% RH have H2O contents corresponding to 88–107% of the theoretical mass of a monolayer and offers an explanation of this variation.
Clays and Clay Minerals | 2007
Victor A. Drits; Douglas K. McCarty
Thermogravimetric analysis combined with mass spectrometry was used to study H2O bound to samples of illite-1M, illite-2M2 and leucophyllite-1M. Samples were heated in a helium atmosphere at different temperatures and after heating at each given temperature were cooled to 35°C. Each cycle in the mass 18 spectrum of each illite sample contains a low-temperature peak at 60–80°C, a medium-temperature peak at 340–360°C, and a high-temperature peak at a temperature that is very close to the maximum temperature of sample heating of a given cycle. Within each heating-cooling cycle, the sample weight at the beginning of cooling is lower than that at the end of the same cooling stage because of H2O resorption. However, the number of H2O molecules released during each medium-temperature heating cycle is equal to the number of H2O molecules resorbed during the corresponding cooling stages.The weight losses, under medium-temperature heating, of the illite samples are related to dehydration when H2O molecules located in K-free sites of the illite interlayers are removed. The medium-temperature peak is reproducible for each cycle because during each cooling stage the illite interlayers resorb the same number of H2O molecules that were lost during the preceding dehydration.Two distinct features are characteristic of leucophyllite during heating-cooling treatments. First, the number of H2O molecules resorbed during cooling is significantly greater than the number of H2O molecules lost during dehydration. Second, the medium-temperature peaks in the spectrum appear only in the last five cycles and the maximum-peak temperature is 450–460°C. These data indicate that the heating-cooling treatments are accompanied by partial rehydroxylation. This rehydroxylation occurs during each coolingstage when a small number of resorbed H2O molecules are trapped in the interlayers, although most migrate into the octahedral sheet of the 2:1 layers and reform as OH groups. The crystal chemical factors responsible for the dehydration and rehydration as well as for the rehydroxylation reactions are discussed and speculation about the origin of the low- and medium-temperature H2O losses is presented.
Clays and Clay Minerals | 2004
Bella B. Zviagina; Douglas K. McCarty; Jan Srodon; Victor A. Drits
Dioctahedral smectite samples of a wide range of compositions (beidellites, montmorillonites, nontronites, Fe-rich montmorillonites and Al-rich nontronites) were studied by infrared (IR) spectroscopy. A special sample-preparation technique was used to eliminate the contribution of molecular water. The OH-stretching regions of the spectra were decomposed and curve-fitted, and the individual OH-stretching bands were assigned to all the possible types of OH-bonded cation pairs that involve Al, Mg and Fe. The integrated optical densities of the OH bands were assumed to be proportional to the contents of the specific types of OH-linked cation pairs with the absorption coefficients being the same for all individual OH bands. Good agreement between the samples’ octahedral cation compositions calculated from the IR data and those given by crystal-chemical formulae was obtained for a representative collection of samples in terms of a unique set of individual OH-band positions that vary within narrow wavenumber intervals. This has allowed us to minimize the ambiguity in spectra decomposition caused by the poor resolution of smectite spectra and confirmed the validity of the resulting band identification.The bands associated with specific OH-bonded cation pairs in the spectra of smectites are, on the whole, shifted to greater wavenumbers with respect to the corresponding bands in micas. In addition to OH bands that refer to the smectite structure, AlOHAl and AlOHFe bands of the pyrophyllite structural fragments were identified. The band-position variation ranges overlap in a few cases (AlOHFe and MgOHMg; AlOHAl of smectite and AlOHFe of pyrophyllite-like component).Unambiguous interpretation of the OH-stretching vibrations was found to be possible only for smectite samples with known chemical compositions, so that IR data cannot be used for quantitative determination of octahedral cation composition of mixtures of dioctahedral 2:1 phyllosilicates. In the case of the studied monomineral smectites with known chemical compositions, IR data provided information on the short-range order/disorder in the distribution of octahedral cations along cation-OH-cation directions. This information can be employed, in conjunction with the data of other spectroscopic and diffraction techniques, in the analysis of short-range octahedral cation distribution.
Clays and Clay Minerals | 2006
Victor A. Drits; Douglas K. McCarty; Bella B. Zviagina
Crystal chemical analysis of various dioctahedral 2:1 phyllosilicates consisting of trans-vacant (tv) and cis-vacant (cv) layers and interstratified cv and tv layers shows that there is compositional control over the distribution of octahedral cations over trans and cis sites. Fe3+ and Mg-rich dioctahedral micas (celadonite, glauconite, leucophyllite and most phengite) occur only as tv varieties. Similarly, the occurrence of tv illites and tv illite fundamental particles in illite-smectite (I-S) does not depend significantly on the cation composition of the 2:1 layers. In contrast, compositional restrictions exist to control the occurrence of pure cv1M illite, which can form only as Fe- and Mg-poor varieties. Similarly, proportions of cv and tv layers in illite fundamental particles depend on the amount of Al in octahedral and tetrahedral sheets of the 2:1 layers.Simulations of atomic coordinates and interatomic distances for periodic tv1M and cv1M illite structures allow us to reveal the main structural factors that favor the formation of cv layers in illite and I-S. It is shown that in contrast to the tv1M structure, interlayer K in cv1M illite has an environment which is similar to that in 2M1 muscovite. This similarity along with a high octahedral and tetrahedral Al content probably provides stability for cv1M illite in low-temperature natural environments. Because of structural control, the occurrence of monomineral cv1M illite, its association with tv 1M illite, and interstratified cv-tv illite fundamental particles is confined by certain physical and chemical conditions. These varieties are most often formed by hydrothermal activity of different origin. The initial material for their formation should be Al-rich and the hydrothermal fluids should be Mg- and Fe-poor. They occur mostly around ore deposits, in bentonites and in sandstone sedimentary rocks.The factors governing the formation of tv and cv layers in dioctahedral smectite are probably related to the layer composition and local order-disorder in the distribution of isomorphous octahedral cations, because there is no influence from fixed interlayer cations. In particular, the occurrence of Mg-OH-Mg cation arrangements is more favorable for the formation of cv montmorillonite layers.
American Mineralogist | 2010
Victor A. Drits; Bella B. Zviagina; Douglas K. McCarty; Alfred L. Salyn
Abstract Several finely dispersed low-temperature dioctahedral micas and micaceous minerals that form solid solutions from (Mg,Fe)-free illite to aluminoceladonite via Mg-rich illite, and from Fe3+-rich glauconite to celadonite have been studied by X-ray diffraction and chemical analysis. The samples have 1M and 1Md structures. The transitions from illite to aluminoceladonite and from glauconite to celadonite are accompanied by a consistent decrease in the mica structural-unit thickness (2:1 layer + interlayer) or csinβ. In the first sample series csinβ decreases from 10.024 to 9.898 Å, and in the second from 10.002 to 9.961 Å. To reveal the basic factors responsible for these regularities, structural modeling was carried out to deduce atomic coordinates for 1M dioctahedral mica based on the unit-cell parameters and cation composition. For each sample series, the relationships among csinβ, maximum and mean thicknesses of octahedral and tetrahedral sheets and of the 2:1 layer, interlayer distance, and variations of the tetrahedral rotation angle, α, and the degree of basal surface corrugation, ΔZ, have been analyzed in detail. The transitions from illite to aluminoceladonite and from glauconite to celadonite are accompanied by a slight increase in the mean thickness of the 2:1 layers and a steady decrease in the α angles, whereas the interlayer distance becomes smaller. These results are consistent with the generally accepted model where tetrahedral rotation is the main factor for the interlayer contraction in muscovitephengite structures: the smaller the rotation angle (α) the larger the ditrigonal ring of the tetrahedral sheet and the interlayer pseudo-hexagonal cavity, allowing the interlayer cation to sink and thus shorten the c parameter. A new insight into the interpretation of the contraction of the mica layer thickness in dioctahedral micas has been achieved with the discovery that micas with the same or close mean interlayer distance, on one hand, have the same or nearly the same substitution of Al for Si; and on the other hand, they may have significantly different parameters of the interlayer structure, such as tetrahedral rotation, basal surface corrugation, ΔZ, and minimum and maximum interlayer distance. These results show that in dioctahedral 1M micas, the mean interlayer distance is determined by the amount of tetrahedral Al because the higher the Al for Si substitution, the stronger the repulsion between the basal O atoms and the larger the interlayer distance and csinβ parameter.
American Mineralogist | 2009
Douglas K. McCarty; Boris A. Sakharov; Victor A. Drits
Abstract The illitization reaction in a thick K-bentonite bed located in upper Cretaceous marine shale in the Montana disturbed belt was studied by X-ray diffraction, chemical analysis, and thermal gravimetric analysis. Modeling of the experimental XRD patterns from oriented clay specimens in air-dried and glycolated states shows that at each sample location in the bentonite bed a mixture of R0 illite-smectite (I-S) and R1 I-S coexist. Each of these phases in all samples consists of the same or similar content of illite and expandable layers independent on location in the bed. In particular, the illite content in the R0 I-S and the R1 I-S from the <0.5 μm fractions is equal to 30 and 62%, respectively. The main difference between the samples at different locations is the different weight concentrations of the coexisting I-S phases. The R1 I-S content decreases progressively from the lower and upper contacts of the bed to its center. The reverse trend was observed for the R0 I-S. The layer unit-cell parameter b increases from samples located near the middle of the bed toward samples near the bed margins. The DTG patterns of the samples contain two endothermic maxima at about 640 and 470 °C, corresponding to cis-vacant (cv) illite and trans-vacant (tv) smectite layers coexisting in the R1 I-S and R0 I-S. Analysis of the crystal-chemical features of the R1 I-S and R0 I-S shows that, in the middle of the bed, both phases are characterized by the lowest octahedral Mg and the highest tetrahedral Al contents. In the structural formula of the R1 I-S, the tetrahedral Al content is significantly higher than the (K+Na) content independent of sample location. In contrast, tetrahedral Al in the R0 I-S located near the bed boundaries is lower compared with (K+Na) content. To account for the crystal-chemical features of the coexisting I-S, a first assumption is that the initial volcanic ash was altered into tv smectite having a homogeneous Al-rich composition throughout the bed. Second, along with K, the active role in illitization was controlled by Mg. Mineralogical zonation of the K-bentonite is explained by the progressive migration of K from the margins toward the bed center with the associated decrease of K cations in the pore fluids. However, the decrease in K concentration was accompanied by a successive increase in R0 I-S content, but not a progressive decrease in illite layer content in a single I-S phase. The main role of Mg was to redistribute octahedral and tetrahedral Al in the 2:1 layers of the R0 I-S and R1 I-S in such a way that the amount of Al in the tetrahedral sheets increased at the expense of the substitution of Mg for Al in the octahedral sheet of the 2:1 layers in the initial smectite. These results demonstrate a new insight into mineralogical sequences of intermediate members of smectite illitization. Instead of a statistically homogeneous and continuous reaction associated with the increase of illite layers in I-S and the simultaneous increase of order of the layer stacking sequence, the illitization reaction in the thick K-bentonite consists of the formation of a physical mixture of two I-S having a contrasting content of layer types and their distribution. Factors responsible for the formation of the coexisting R0 I-S and R1 I-S are discussed
Clays and Clay Minerals | 2008
Douglas K. McCarty; Boris A. Sakharov; Victor A. Drits
Samples from different depths in the Oligocene Frio formation (offshore Gulf of Mexico) were studied by X-ray diffraction (XRD), thermal analyses, and scanning electron microscopy. The experimental XRD patterns recorded from oriented and ethylene glycol (EG) solvated clay fractions of the samples were similar to those typical of random, mixed-layered illite-smectite (R0 I-S). The experimental XRD patterns recorded in air-dried (AD) and EG states were simulated using three different models. One of them corresponds to R0 I-S for which thickness and content of the interstratified layers were determined by the Środoń technique. The second model is represented by a single homogeneous I-S in which illite and smectite layers are interstratified with a tendency to segregation. The expandability of the segregated I-S model varies from 48% to 75% without any rational relationship between the smectite layer content and depth.The third model assumes that the clay fraction is a physical mixture of smectite and an R0 I-S. In this model the I-S contains 65% illite and 35% smectite layers independent of depth, whereas the smectite content varies from 28% to 63%. This model has consistently smaller profile factors, Rp, for both EG and AD XRD scans compared with the Rp values determined for the other two models.The mineralogical association, volcanic origin, narrow stratigraphic interval (427 m), and low maximum temperature (42°C) of the studied Frio Formation are considered. These features are completely consistent with the two-phase model and so the segregation model must be rejected. An authigenic origin of the pure smectite and an alternative detrital or authigenic origin of the R0 I-S are discussed.
AAPG Bulletin | 2005
Peter Eichhubl; Peter D'Onfro; Atilla Aydin; John Waters; Douglas K. McCarty
The structure, texture, composition, and capillary-pressure resistance were assessed for shale deformed along a normal fault with 9 m (29 ft) of dip separation. Shale is entrained from a 1.6-m (5-ft)-thick source layer into the fault zone and attenuated to about 5 cm (2 in.). A quantitative analysis of shale mineral composition indicates that little material is contributed to the fault rock from the sandstone units that over- and underlie the shale source layer. This finding is in contrast to common predictive models of fault sealing that assume mechanical wear along the fault surfaces. Instead, shale entrainment is inferred to result from incipient distributed shear across a zone of deformation bands in the over- and underlying sandstone, granular flow of the shale, and the increasing localization of deformation in the shale core or along the shale-sandstone interfaces of the evolving fault zone. The composition of deformed shale indicates the effective mixing of clay- and quartz-rich layers of the shaly source unit by granular flow during shale deformation.Capillary displacement pressures of deformed shale are 30% higher compared to the most clay-rich undeformed shale outside the fault. This increase in sealing capacity, in combination with a 50% anisotropy in capillary displacement pressure, is primarily attributed to the development of a planar fabric in deformed shale. Enhanced clay diagenesis likely contributed to the increase in shale sealing capacity. We conclude that fault seal by shale entrainment involves a variety of structural, textural, and diagenetic processes that require an integrated methodology for improved predictions of fault-sealing capacity.