Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas L. Huseby is active.

Publication


Featured researches published by Douglas L. Huseby.


Molecular Biology and Evolution | 2017

Mutation supply and relative fitness shape the genotypes of ciprofloxacin-resistant Escherichia coli.

Douglas L. Huseby; Franziska Pietsch; Gerrit Brandis; Linnéa Garoff; Angelica Tegehall; Diarmaid Hughes

Ciprofloxacin is an important antibacterial drug targeting Type II topoisomerases, highly active against Gram-negatives including Escherichia coli. The evolution of resistance to ciprofloxacin in E. coli always requires multiple genetic changes, usually including mutations affecting two different drug target genes, gyrA and parC. Resistant mutants selected in vitro or in vivo can have many different mutations in target genes and efflux regulator genes that contribute to resistance. Among resistant clinical isolates the genotype, gyrA S83L D87N, parC S80I is significantly overrepresented suggesting that it has a selective advantage. However, the evolutionary or functional significance of this high frequency resistance genotype is not fully understood. By combining experimental data and mathematical modeling, we addressed the reasons for the predominance of this specific genotype. The experimental data were used to model trajectories of mutational resistance evolution under different conditions of drug exposure and population bottlenecks. We identified the order in which specific mutations are selected in the clinical genotype, showed that the high frequency genotype could be selected over a range of drug selective pressures, and was strongly influenced by the relative fitness of alternative mutations and factors affecting mutation supply. Our data map for the first time the fitness landscape that constrains the evolutionary trajectories taken during the development of clinical resistance to ciprofloxacin and explain the predominance of the most frequently selected genotype. This study provides strong support for the use of in vitro competition assays as a tool to trace evolutionary trajectories, not only in the antibiotic resistance field.


Journal of Antimicrobial Chemotherapy | 2017

Ciprofloxacin selects for RNA polymerase mutations with pleiotropic antibiotic resistance effects

Franziska Pietsch; Jessica Bergman; Gerrit Brandis; Anna Zorzet; Douglas L. Huseby; Diarmaid Hughes

Objectives Resistance to the fluoroquinolone drug ciprofloxacin is commonly linked to mutations that alter the drug target or increase drug efflux via the major AcrAB-TolC transporter. Very little is known about other mutations that might also reduce susceptibility to ciprofloxacin. We discovered that an Escherichia coli strain experimentally evolved for resistance to ciprofloxacin had acquired a mutation in rpoB, the gene coding for the &bgr;-subunit of RNA polymerase. The aim of this work was to determine whether this mutation, and other mutations in rpoB, contribute to ciprofloxacin resistance and, if so, by which mechanism. Methods Independent lineages of E. coli were evolved in the presence of ciprofloxacin and clones from endpoint cultures were screened for mutations in rpoB. Ciprofloxacin-selected rpoB mutations were identified and characterized in terms of effects on susceptibility and mode of action. Results Mutations in rpoB were selected at a high frequency in 3 out of 10 evolved lineages, in each case arising after the occurrence of mutations affecting topoisomerases and drug efflux. All ciprofloxacin-selected rpoB mutations had a high fitness cost in the absence of drug, but conferred a competitive advantage in the presence of ciprofloxacin. RNA sequencing and quantitative RT–PCR analysis showed that expression of mdtK, encoding a multidrug efflux transporter, was significantly increased by the ciprofloxacin-selected rpoB mutations. The susceptibility phenotype was shown to depend on the presence of an active mdtK and a mutant rpoB allele. Conclusions These data identify mutations in RNA polymerase as novel contributors to the evolution of resistance to ciprofloxacin and show that the phenotype is mediated by increased MdtK-dependent drug efflux.


Mbio | 2017

Alternative Evolutionary Pathways for Drug-Resistant Small Colony Variant Mutants in Staphylococcus aureus

Sha Cao; Douglas L. Huseby; Gerrit Brandis; Diarmaid Hughes

ABSTRACT Staphylococcus aureus is known to generate small colony variants (SCVs) that are resistant to aminoglycoside antibiotics and can cause persistent and recurrent infections. The SCV phenotype is unstable, and compensatory mutations lead to restored growth, usually with loss of resistance. However, the evolution of improved growth, by mechanisms that avoid loss of antibiotic resistance, is very poorly understood. By selection with serial passaging, we isolated and characterized different classes of extragenic suppressor mutations that compensate for the slow growth of small colony variants. Compensation occurs by two distinct bypass mechanisms: (i) translational suppression of the initial SCV mutation by mutant tRNAs, ribosomal protein S5, or release factor 2 and (ii) mutations that cause the constitutive activation of the SrrAB global transcriptional regulation system. Although compensation by translational suppression increases growth rate, it also reduces antibiotic susceptibility, thus restoring a pseudo-wild-type phenotype. In contrast, an evolutionary pathway that compensates for the SCV phenotype by activation of SrrAB increases growth rate without loss of antibiotic resistance. RNA sequence analysis revealed that mutations activating the SrrAB pathway cause upregulation of genes involved in peptide transport and in the fermentation pathways of pyruvate to generate ATP and NAD+, thus explaining the increased growth. By increasing the growth rate of SCVs without the loss of aminoglycoside resistance, compensatory evolution via the SrrAB activation pathway represents a threat to effective antibiotic therapy of staphylococcal infections. IMPORTANCE Small colony variants (SCVs) of Staphylococcus aureus are a significant clinical problem, causing persistent and antibiotic-resistant infections. However, SCVs are unstable and can rapidly evolve growth-compensated mutants. Previous data suggested that growth compensation only occurred with the loss of antibiotic resistance. We have used selection with serial passaging to uncover four distinct pathways of growth compensation accessible to SCVs. Three of these paths (reversion, intragenic suppression, and translational suppression) increase growth at the expense of losing antibiotic resistance. The fourth path activates an alternative transcriptional program and allows the bacteria to produce the extra ATP required to support faster growth, without losing antibiotic resistance. The importance of this work is that it shows that drug-resistant SCVs can evolve faster growth without losing antibiotic resistance. Small colony variants (SCVs) of Staphylococcus aureus are a significant clinical problem, causing persistent and antibiotic-resistant infections. However, SCVs are unstable and can rapidly evolve growth-compensated mutants. Previous data suggested that growth compensation only occurred with the loss of antibiotic resistance. We have used selection with serial passaging to uncover four distinct pathways of growth compensation accessible to SCVs. Three of these paths (reversion, intragenic suppression, and translational suppression) increase growth at the expense of losing antibiotic resistance. The fourth path activates an alternative transcriptional program and allows the bacteria to produce the extra ATP required to support faster growth, without losing antibiotic resistance. The importance of this work is that it shows that drug-resistant SCVs can evolve faster growth without losing antibiotic resistance.


Journal of Antimicrobial Chemotherapy | 2017

Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli.

Lisa Praski Alzrigat; Douglas L. Huseby; Gerrit Brandis; Diarmaid Hughes

Abstract Objectives To determine whether the spectrum of mutations in marR in ciprofloxacin-resistant clinical isolates of Escherichia coli shows evidence of selection bias, either to reduce fitness costs, or to increase drug resistance. MarR is a repressor protein that regulates, via MarA, expression of the Mar regulon, including the multidrug efflux pump AcrAB-TolC. Methods Isogenic strains carrying 36 different marR alleles identified in resistant clinical isolates, or selected for resistance in vitro, were constructed. Drug susceptibility and relative fitness in growth competition assays were measured for all strains. The expression level of marA, and of various efflux pump components, as a function of specific mutations in marR, was measured by qPCR. Results The spectrum of genetic alterations in marR in clinical isolates is strongly biased against inactivating mutations. In general, the alleles found in clinical isolates conferred a lower level of resistance and imposed a lower growth fitness cost than mutations selected in vitro. The level of expression of MarA correlated well with the MIC of ciprofloxacin. This supports the functional connection between mutations in marR and reduced susceptibility to ciprofloxacin. Conclusions Mutations in marR selected in ciprofloxacin-resistant clinical isolates are strongly biased against inactivating mutations. Selection favours mutant alleles that have the lowest fitness costs, even though these cause only modest reductions in drug susceptibility. This suggests that selection for high relative fitness is more important than selection for increased resistance in determining which alleles of marR will be selected in resistant clinical isolates.


Bioorganic & Medicinal Chemistry | 2017

Design, synthesis and in vitro biological evaluation of oligopeptides targeting E. coli type I signal peptidase (LepB).

Maria De Rosa; Lu Lu; Edouard Zamaratski; Natalia Szałaj; Sha Cao; Henrik Wadensten; Lena Lenhammar; Johan Gising; Annette K. Roos; Douglas L. Huseby; Rolf Larsson; Per E. Andrén; Diarmaid Hughes; Peter Brandt; Sherry L. Mowbray; Anders Karlén

Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low μg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.


Frontiers in Immunology | 2017

Early-Life Human Microbiota Associated With Childhood Allergy Promotes the T Helper 17 Axis in Mice

Dagbjort H. Petursdottir; Sofia Nordlander; Khaleda Rahman Qazi; Claudia Carvalho-Queiroz; Omneya Ahmed Osman; Eva Hell; Sophia Björkander; Yeneneh Haileselassie; Marit Navis; Efthymia Kokkinou; Ivan Zong Long Lio; Julia Hennemann; Björn Brodin; Douglas L. Huseby; Caroline Nilsson; Diarmaid Hughes; Klas Udekwu; Eva Sverremark-Ekström

The intestinal microbiota influences immune maturation during childhood, and is implicated in early-life allergy development. However, to directly study intestinal microbes and gut immune responses in infants is difficult. To investigate how different types of early-life gut microbiota affect immune development, we collected fecal samples from children with different allergic heredity (AH) and inoculated germ-free mice. Immune responses and microbiota composition were evaluated in the offspring of these mice. Microbial composition in the small intestine, the cecum and the colon were determined by 16S rRNA sequencing. The intestinal microbiota differed markedly between the groups of mice, but only exposure to microbiota associated with AH and known future allergy in children resulted in a T helper 17 (Th17)-signature, both systemically and in the gut mucosa in the mouse offspring. These Th17 responses could be signs of a particular microbiota and a shift in immune development, ultimately resulting in an increased risk of allergy.


bioRxiv | 2018

D,D-muramyl endopeptidase Spr contributes to intrinsic vancomycin resistance in Salmonella enterica serovar Typhimurium

Kim Vestoe; Douglas L. Huseby; Helen Wang; Diarmaid Hughes; Mikael Rhen

The impermeability barrier provided by the outer membrane of enteric bacteria, a feature lacking in Gram-positive bacteria, plays a major role in maintaining resistance to numerous antimicrobial compounds and antibiotics. Here we demonstrate that mutational inactivation of spr, coding for a muramyl endopeptidase, significantly sensitizes Salmonella enterica serovar Typhimurium to vancomycin without any accompanying apparent growth defect or outer membrane destabilization. A similar phenotype was not achieved by deleting the mepA, pbpG, nlpC, yebA or yhdO genes coding for functional homologues to Spr. The spr mutant revealed increased autolytic behavior in response to not only vancomycin, but also to penicillin G, an antibiotic for which the mutant displayed a wild-type MIC. A screen for suppressor mutations of the spr mutant phenotype revealed that deletion of tsp (prc), encoding a periplasmic carboxypeptidase involved in processing Spr and PBP3, restored intrinsic resistance to vancomycin and reversed the autolytic phenotype of an spr mutant. Our data suggest that Spr contributes to intrinsic antibiotic resistance in S. Typhimurium without directly affecting the outer membrane permeability barrier. Furthermore, our data suggests that compounds that target specific cell wall endopeptidases might have the potential to expand the activity spectrum of traditional Gram-positive antibiotics.


Archive | 2018

Methods to Determine Mutational Trajectories After Experimental Evolution of Antibiotic Resistance

Douglas L. Huseby; Diarmaid Hughes

The evolution of bacterial resistance to antibiotics by mutation within the genome (as distinct from horizontal gene transfer of new material into a genome) could occur in a single step but is usually a multistep process. Resistance evolution can be studied in laboratory environments by serial passage of bacteria in liquid culture or on agar, with selection at constant, or varying, concentrations of drug. Whole genome sequencing can be used to make an initial analysis of the evolved mutants. The trajectory of evolution can be determined by sequence analysis of strains from intermediate steps in the evolution, complemented by phenotypic analysis of genetically reconstructed isogenic strains that recapitulate the intermediate steps in the evolution.


Journal of Medicinal Chemistry | 2018

Imidazopyrazinones (IPYs): Non-Quinolone Bacterial Topoisomerase Inhibitors Showing Partial Cross-Resistance with Quinolones

Frédéric Jeannot; Thomas Taillier; Pierre Despeyroux; Stéphane Renard; Astrid Rey; Michael Mourez; Christoph Poeverlein; Imène Khichane; Marc-Antoine Perrin; Stéphanie Versluys; Robert A. Stavenger; Jianzhong Huang; Thomas Germe; Anthony Maxwell; Sha Cao; Douglas L. Huseby; Diarmaid Hughes; Eric Bacqué

In our quest for new antibiotics able to address the growing threat of multidrug resistant infections caused by Gram-negative bacteria, we have investigated an unprecedented series of non-quinolone bacterial topoisomerase inhibitors from the Sanofi patrimony, named IPYs for imidazopyrazinones, as part of the Innovative Medicines Initiative (IMI) European Gram Negative Antibacterial Engine (ENABLE) organization. Hybridization of these historical compounds with the quinazolinediones, a known series of topoisomerase inhibitors, led us to a novel series of tricyclic IPYs that demonstrated potential for broad spectrum activity, in vivo efficacy, and a good developability profile, although later profiling revealed a genotoxicity risk. Resistance studies revealed partial cross-resistance with fluoroquinolones (FQs) suggesting that IPYs bind to the same region of bacterial topoisomerases as FQs and interact with at least some of the keys residues involved in FQ binding.


Journal of Antimicrobial Chemotherapy | 2018

Effect of aminoacyl-tRNA synthetase mutations on susceptibility to ciprofloxacin in Escherichia coli

Linnéa Garoff; Douglas L. Huseby; Lisa Praski Alzrigat; Diarmaid Hughes

Background Chromosomal mutations that reduce ciprofloxacin susceptibility in Escherichia coli characteristically map to drug target genes (gyrAB and parCE), and genes encoding regulators of the AcrAB-TolC efflux pump. Mutations in RNA polymerase can also reduce susceptibility, by up-regulating the MdtK efflux pump. Objectives We asked whether mutations in additional chromosomal gene classes could reduce susceptibility to ciprofloxacin. Methods Experimental evolution, complemented by WGS analysis, was used to select and identify mutations that reduce susceptibility to ciprofloxacin. Transcriptome analysis, genetic reconstructions, susceptibility measurements and competition assays were used to identify significant genes and explore the mechanism of resistance. Results Mutations in three different aminoacyl-tRNA synthetase genes (leuS, aspS and thrS) were shown to reduce susceptibility to ciprofloxacin. For two of the genes (leuS and aspS) the mechanism was partially dependent on RelA activity. Two independently selected mutations in leuS (Asp162Asn and Ser496Pro) were studied in most detail, revealing that they induce transcriptome changes similar to a stringent response, including up-regulation of three efflux-associated loci (mdtK, acrZ and ydhIJK). Genetic analysis showed that reduced susceptibility depended on the activity of these loci. Broader antimicrobial susceptibility testing showed that the leuS mutations also reduce susceptibility to additional classes of antibiotics (chloramphenicol, rifampicin, mecillinam, ampicillin and trimethoprim). Conclusions The identification of mutations in multiple tRNA synthetase genes that reduce susceptibility to ciprofloxacin and other antibiotics reveals the existence of a large mutational target that could contribute to resistance development by up-regulation of an array of efflux pumps.

Collaboration


Dive into the Douglas L. Huseby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander S. Mankin

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Dobosz-Bartoszek

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge