Douglas M. Heithoff
University of California, Santa Barbara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas M. Heithoff.
Infection and Immunity | 2001
Steven M. Julio; Douglas M. Heithoff; Daniele Provenzano; Karl E. Klose; Robert L. Sinsheimer; David A. Low; Michael J. Mahan
ABSTRACT Salmonella strains that lack or overproduce DNA adenine methylase (Dam) elicit a protective immune response to differentSalmonella species. To generate vaccines against other bacterial pathogens, the dam genes of Yersinia pseudotuberculosis and Vibrio cholerae were disrupted but found to be essential for viability. Overproduction of Dam significantly attenuated the virulence of these two pathogens, leading to, in Yersinia, the ectopic secretion of virulence proteins (Yersinia outer proteins) and a fully protective immune response in vaccinated hosts. Dysregulation of Dam activity may provide a means for the development of vaccines against varied bacterial pathogens.
Infection and Immunity | 2001
Douglas M. Heithoff; Elena Y. Enioutina; Raymond A. Daynes; Robert L. Sinsheimer; David A. Low; Michael J. Mahan
ABSTRACT Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts.
Infection and Immunity | 2001
E.L. Dueger; John K. House; Douglas M. Heithoff; Michael J. Mahan
ABSTRACT Salmonella DNA adenine methylase (Dam) mutants that lack or overproduce Dam are highly attenuated for virulence in mice and confer protection against murine typhoid fever. To determine whether vaccines based on Dam are efficacious in poultry, aSalmonella Dam− vaccine was evaluated in the protection of chicken broilers against oral challenge with homologous and heterologous Salmonella serovars. A Salmonella enterica serovar Typhimurium Dam− vaccine strain was attenuated for virulence in day-of-hatch chicks more than 100,000-fold. Vaccination of chicks elicited cross-protective immune responses, as evidenced by reduced colonization (10- to 10,000-fold) of the gastrointestinal tract (ileum, cecum, and feces) and visceral organs (bursa and spleen) after challenge with homologous (Typhimurium F98) and heterologous (Enteritidis 4973 and S. entericaO6,14,24: e,h-monophasic) Salmonella serovars that are implicated in Salmonella infection of poultry. The protection conferred was observed for the organ or the maximum CFU/tissue/bird as a unit of analysis, suggesting that Dam mutant strains may serve as the basis for the development of efficacious poultry vaccines for the containment of Salmonella.
Trends in Microbiology | 1997
Douglas M. Heithoff; Christopher P. Conner; Michael J. Mahan
In vivo expression studies reveal many bacterial genes that contribute to the fitness of the organism in the context of host ecology. This collection of virulence genes defines the unique lifestyle of a pathogen during infection, pointing to the functions that dictate host specificity, tissue tropism and disease manifestation.
Applied and Environmental Microbiology | 2008
Douglas M. Heithoff; William R. Shimp; Patrick W. Lau; Golnaz Badie; Elena Y. Enioutina; Raymond A. Daynes; Barbara A. Byrne; John K. House; Michael J. Mahan
ABSTRACT The global trend toward intensive livestock production has led to significant public health risks and industry-associated losses due to an increased incidence of disease and contamination of livestock-derived food products. A potential factor contributing to these health concerns is the prospect that selective pressure within a particular host may give rise to bacterial strain variants that exhibit enhanced fitness in the present host relative to that in the parental host from which the strain was derived. Here, we assessed 184 Salmonella enterica human and animal clinical isolates for their virulence capacities in mice and for the presence of the Salmonella virulence plasmid encoding the SpvB actin cytotoxin required for systemic survival and Pef fimbriae, implicated in adherence to the murine intestinal epithelium. All (21 of 21) serovar Typhimurium clinical isolates derived from animals were virulent in mice, whereas many (16 of 41) serovar Typhimurium isolates derived from human salmonellosis patients lacked this capacity. Additionally, many (10 of 29) serovar Typhimurium isolates derived from gastroenteritis patients did not possess the Salmonella virulence plasmid, in contrast to all animal and human bacteremia isolates tested. Lastly, among serovar Typhimurium isolates that harbored the Salmonella virulence plasmid, 6 of 31 derived from human salmonellosis patients were avirulent in mice, which is in contrast to the virulent phenotype exhibited by all the animal isolates examined. These studies suggest that Salmonella isolates derived from human salmonellosis patients are distinct from those of animal origin. The characterization of these bacterial strain variants may provide insight into their relative pathogenicities as well as into the development of treatment and prophylactic strategies for salmonellosis.
PLOS Pathogens | 2012
Douglas M. Heithoff; William R. Shimp; John K. House; Yi Xie; Bart C. Weimer; Robert L. Sinsheimer; Michael J. Mahan
Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection. However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in virulence during the infective process- a prospect that has significant implications for human and animal health. Our findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S. enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production; cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-β; IL-1β; IL-6; IL-10). Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ, PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2 effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert negative public health impacts and industry-associated losses.
Infection and Immunity | 2002
Ronit Shtrichman; Douglas M. Heithoff; Michael J. Mahan; Charles E. Samuel
ABSTRACT The host interferon (IFN) system plays an important role in protection against microbial infections. Salmonella enterica serovar Typhimurium is highly virulent in the mouse model, whereas mutants that lack DNA adenine methylase (Dam−) are highly attenuated and elicit fully protective immune responses against murine typhoid fever. We examined the expression of IFN-responsive genes in several mouse tissues following infection with Dam+ or Dam−Salmonella. Infection of mice with Dam+Salmonella resulted in the induction of host genes known to be indicators of IFN bioactivity and regulated by either IFN-α/β (Mx1) or IFN-γ (class II transactivator protein [CIITA] and inducible nitric oxide synthase [iNOS]) or by both IFN-α/β and IFN-γ (RNA-specific adenosine deaminase [ADAR1] and RNA-dependent protein kinase [PKR]) in a tissue-specific manner compared to uninfected animals. Since the Mx1 promoter is IFN-α/β specific and the Mx1 gene is not inducible directly by IFN-γ, these data suggest a role of IFN-α/β in the host response to Salmonella infection. Mice infected with Dam−Salmonella showed reduced expression of the same set of IFN-stimulated genes (ISGs) as that observed after infection with wild-type Salmonella. The reduced capacity to induce ISGs persisted in Dam−-vaccinated mice after challenge with the virulent (Dam+) strain. Finally, although no Dam− organisms were recovered from the liver or spleen after oral infection of mice, ADAR, PKR, Mx, and CIITA expression levels were elevated in these tissues relative to those in uninfected mice, suggestive of the distant action of a signaling molecule(s) in the activation of ISG expression.
International Journal of Food Microbiology | 2003
E.L. Dueger; John K. House; Douglas M. Heithoff; Michael J. Mahan
Salmonella mutants lacking DNA adenine methylase (Dam) are highly attenuated for virulence and confer protection against oral challenge with homologous and heterologous Salmonella serovars in mice and chicken broilers. To determine whether vaccines based on Dam are efficacious in preventing early colonization of newly hatched chickens, a Salmonella typhimurium Dam(-) vaccine was evaluated for the protection of chicks against oral challenge with homologous and heterologous Salmonella serovars. Vaccination of chicks elicited protection 2 and 6 days post-challenge as evidenced by a significant reduction in colonization of the gastrointestinal tract (ileum, cecum and feces) and visceral organs (spleen and bursa) when challenged with homologous S. typhimurium. Moderate protection was observed following challenge with heterologous S. enteritidis and Salmonella O6, 14, 24:e, h-monophasic) serovars. These data suggest that Salmonella Dam mutant strains conferred cross-protection, presumably via competitive exclusion mechanisms that prevent superinfection of chicks by other Salmonella strains. Such protection may reduce pre-harvest Salmonella contamination in poultry, decreasing the potential for food-borne transmission of this pathogen to humans.
Vaccine | 2003
E.L. Dueger; John K. House; Douglas M. Heithoff; Michael J. Mahan
Salmonellosis is an important disease of livestock and Salmonella contamination of livestock-derived food products and effluents pose a significant risk to human health. Salmonella vaccines currently available to prevent salmonellosis in cattle have limited efficacy. Here we evaluated a Salmonella enterica serovar Typhimurium vaccine strain lacking the DNA adenine methylase (Dam) for safety and efficacy in calves. Vaccination was safe in calves, and following challenge with virulent Typhimurium 4 weeks post-immunization, vaccinated animals exhibited significantly lower mortality, diarrhea, and rectal temperatures, as well as reduced colonization of gastrointestinal tract and visceral organs compared to non-vaccinated control animals. Additionally, early onset protection (competitive exclusion) in vaccinated neonatal calves was demonstrated by attenuated clinical disease (as measured by rectal temperatures and attitude scores) and reduced mortality when challenged with virulent Typhimurium 24h after immunization. Taken together, these data suggest that vaccination with Salmonella Dam mutant strains confer significant protection against Salmonella infections in cattle via both adaptive immunity and competitive exclusion mechanisms.
Infection and Immunity | 2008
Douglas M. Heithoff; Elena Y. Enioutina; Diana Bareyan; Raymond A. Daynes; Michael J. Mahan
ABSTRACT Immunity conferred by conventional vaccines is restricted to a narrow range of closely related strains, highlighting the unmet medical need for the development of vaccines that elicit protection against multiple pathogenic serotypes. Here we show that a Salmonella bivalent vaccine comprised of strains that lack and overproduce DNA adenine methylase (Dam) conferred cross-protective immunity to salmonella clinical isolates of human and animal origin. Protective immunity directly correlated with increased levels of cross-reactive opsonizing antibodies and memory T cells and a diminished expansion of myeloid-derived suppressor cells (MDSCs) that are responsible for the immune suppression linked to several conditions of host stress, including chronic microbial infections, traumatic insults, and many forms of cancer. Further, aged mice contained increased numbers of MDSCs and were more susceptible to Salmonella infection than young mice, suggesting a role for these cells in the immune declines associated with the natural aging process. These data suggest that interventions capable of reducing MDSC presence and activities may allow corresponding increases in B- and T-cell stimulation and benefit the ability of immunologically diverse populations to be effectively vaccinated as well as reducing the risk of susceptible individuals to infectious disease.