Douglas M. Ruden
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas M. Ruden.
Fly | 2012
Pablo Cingolani; Adrian E. Platts; Le Lily Wang; Melissa Coon; Tung Nguyen; Luan Wang; Susan Land; Xiangyi Lu; Douglas M. Ruden
We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5′UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.
International Journal of Obesity | 2006
Scott W. Keith; David T. Redden; Peter T. Katzmarzyk; Mary M. Boggiano; Erin C. Hanlon; Ruth M. Benca; Douglas M. Ruden; Angelo Pietrobelli; Jamie L. Barger; Kevin R. Fontaine; Chenxi Wang; Louis J. Aronne; Suzanne M. Wright; Monica L. Baskin; Nikhil V. Dhurandhar; M. C. Lijoi; C. M. Grilo; M. DeLuca; Andrew O. Westfall; David B. Allison
Objective:To investigate plausible contributors to the obesity epidemic beyond the two most commonly suggested factors, reduced physical activity and food marketing practices.Design:A narrative review of data and published materials that provide evidence of the role of additional putative factors in contributing to the increasing prevalence of obesity.Data:Information was drawn from ecological and epidemiological studies of humans, animal studies and studies addressing physiological mechanisms, when available.Results:For at least 10 putative additional explanations for the increased prevalence of obesity over the recent decades, we found supportive (although not conclusive) evidence that in many cases is as compelling as the evidence for more commonly discussed putative explanations.Conclusion:Undue attention has been devoted to reduced physical activity and food marketing practices as postulated causes for increases in the prevalence of obesity, leading to neglect of other plausible mechanisms and well-intentioned, but potentially ill-founded proposals for reducing obesity rates.
Critical Reviews in Food Science and Nutrition | 2009
Emily J. McAllister; Nikhil V. Dhurandhar; Scott W. Keith; Louis J. Aronne; Jamie L. Barger; Monica L. Baskin; Ruth M. Benca; Joseph Biggio; Mary M. Boggiano; Joe C. Eisenmann; Mai A. Elobeid; Kevin R. Fontaine; Peter D. Gluckman; Erin C. Hanlon; Peter T. Katzmarzyk; Angelo Pietrobelli; David T. Redden; Douglas M. Ruden; Chenxi Wang; Robert A. Waterland; Suzanne M. Wright; David B. Allison
The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic.
Nature Genetics | 2003
Xiangyi Lu; Li Xiao; Xiaoyan Wang; Mark D. Garfinkel; Douglas M. Ruden
Morphological alterations have been shown to occur in Drosophila melanogaster when function of Hsp90 (heat shock 90-kDa protein 1α, encoded by Hsp83) is compromised during development. Genetic selection maintains the altered phenotypes in subsequent generations. Recent experiments have shown, however, that phenotypic variation still occurs in nearly isogenic recombinant inbred strains of Arabidopsis thaliana. Using a sensitized isogenic D. melanogaster strain, iso-KrIf-1, we confirm this finding and present evidence supporting an epigenetic mechanism for Hsp90s capacitor function, whereby reduced activity of Hsp90 induces a heritably altered chromatin state. The altered chromatin state is evidenced by ectopic expression of the morphogen wingless in eye imaginal discs and a corresponding abnormal eye phenotype, both of which are epigenetically heritable in subsequent generations, even when function of Hsp90 is restored. Mutations in nine different genes of the trithorax group that encode chromatin-remodeling proteins also induce the abnormal phenotype. These findings suggest that Hsp90 acts as a capacitor for morphological evolution through epigenetic and genetic mechanisms.
Frontiers in Genetics | 2012
Pablo Cingolani; Viral M. Patel; Melissa Coon; Tung Nguyen; Susan Land; Douglas M. Ruden; Xiangyi Lu
This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon mutation in each of the two allelic mutants whereas the other four candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic chemicals.
Current Biology | 2003
Zhiqian Gao; Douglas M. Ruden; Xiangyi Lu
Sperm of both mammals and invertebrates move toward specific sites in the female reproductive tract. However, molecular mechanisms for sperm to follow directional cues are unknown. Here, we report genetic analysis of Drosophila Pkd2 at 33E3 (Pkd2, CG6504), which encodes a Ca(2+)-activated, nonselective cation channel homologous to the human Pkd2 autosomal dominant polycystic kidney disease (ADPKD) gene. The PKD2 family of genes has been implicated in sensory responses through protein localization on primary cilia of epithelia and neurons. In renal tubules, cilium-associated PKD2 appears to mediate Ca(2+) influx in response to fluid flow, and the loss of fluid sensation probably contributes to cyst growth and ADPKD. Sperm tails or flagella are specialized cilia essential for movement. Drosophila Pkd2 is abundantly associated with the tail and the acrosome-containing head region of mature sperm. Targeted disruption of Pkd2 results in male sterility without affecting spermatogenesis. The mutant sperm are motile but fail to swim into the storage organs in the female. Rare mutant sperm that reach the storage organs are able to fertilize the egg and produce viable progeny. Our data demonstrate that the Drosophila PKD2 cation channel operates in sperm for directional movement inside the female reproductive tract.
Epigenetics | 2011
Nancy Chia; Luan Wang; Xiangyi Lu; Mary-Claude Senut; Carol A. Brenner; Douglas M. Ruden
Many environmental toxins, such as heavy metals, air particles, and ozone, induce oxidative stress and decrease the levels of NADH and NADPH, cofactors that drive anabolic biochemical reactions and provide reducing capacity to combat oxidative stress. Recently, it was found that the Ten-eleven translocation (TET) protein family members, which oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the DNA, is activated under high oxygen conditions by alpha ketoglutarate (-KG), a cofactor produced by aerobic metabolism in the citric acid cycle. TET, Jumonji-family histone demethylases, and prolyl hydroxylase, a repressor of HIF1a under high oxygen conditions, all require alpha ketoglutarate (a-KG) as cofactors for their activation. The impact of the HIF1a and TET proteins, which appear to have opposing functions, reaches several aspects of human life-including cell growth regulation, embryonic stem cell maintenance, cell differentiation, and tumorigenesis. The role of metabolism on regulating global DNA methylation and chromatin organization is recently demanding greater attention from the biomedical research community. This article will discuss the possible role of TET activation and the regulation of 5hmC and 5mC levels in response to environmental stress. We will also discuss how 5hmC and 5mC levels at the promoters of specific genes might be a useful biomarker for exposure to environmental toxins.
BMC Research Notes | 2011
Tung Nguyen; Weisong Shi; Douglas M. Ruden
BackgroundResearch in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface.ResultsTo urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.sourceforge.net/ and its web version is at http://mine.cs.wayne.edu:8080/CloudAligner/ConclusionsOur results show that CloudAligner is faster than CloudBurst, provides more accurate results than RMAP, and supports various input as well as output formats. In addition, with the web-based interface, it is easier to use than its counterparts.
International Journal of Environmental Research and Public Health | 2010
Miguel A. Padilla; Mai A. Elobeid; Douglas M. Ruden; David B. Allison
It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten). Some of the associations were significant direct relationships (barium and thallium), and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead). Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.
International Journal of Environmental Research and Public Health | 2010
Mai A. Elobeid; Miguel A. Padilla; David W. Brock; Douglas M. Ruden; David B. Allison
Recent evidence suggests that endocrine disrupting chemicals (EDCs) may cause perturbations in endogenous hormonal regulation that predispose to weight gain. Using data from NHANES (1999–2002), we investigated the association between body mass index (BMI), waist circumference (WC) and selected persistent organic pollutants (POPs) via multiple linear regressions. Consistent interaction was found between gender, ln oxychlordane and ln p,p’ DDT. Also, we found an association between WC and ln oxychlordane and ln hpcdd in subjects with detectable levels of POPs, whereas an association between WC and ln p,p’ DDT was observed in all subjects. Furthermore, ln Ocdd showed an increase with higher WC and BMI, whereas, ln trans-nonachlor decreased with higher BMI. Hence, BMI and WC are associated with POPs levels, making the chemicals plausible contributors to the obesity epidemic.