Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas Munson is active.

Publication


Featured researches published by Douglas Munson.


ASME 2008 Pressure Vessels and Piping Conference | 2008

Tensile Testing and Material Property Development of High Density Polyethylene Pipe Materials

Timothy M. Adams; Siegrid Hall; Rudolph J. Scavuzzo; Douglas Munson; Jeffrey W. Andrasik; Shane J. Findlan

Degradation of service water systems is a major issue facing nuclear power plant owners, and many plants will require repair or replacement of existing carbon steel piping components. High Density Polyethylene pipe has been used in non-safety service water systems for over nine years and found to perform well, but it is not currently permitted in the ASME Section III Boiler and Pressure Vessel Code, Division 1 for use in nuclear safety-related systems. To assist in the implementation of High Density Polyethylene pipe in the ASME Boiler and Pressure Vessel Code, Section III, Division 1 for Safety Class 3 applications, EPRI initiated a High Density Polyethylene pipe and pipe material testing program. This test program includes tensile testing and fatigue testing of High Density Polyethylene piping and piping components and the development of slow crack growth data. To determine the material and engineering properties needed, extensive tensile testing of specimens cut from High Density Polyethylene pipe was conducted. The initial tensile test program was conducted on PE 3408 with cell classification 345464C and a second, not yet finalized, phase was added to test PE 4710 with cell classification 445474C. The data developed during the testing were used to establish ultimate strain, elastic moduli, yield stress and yield strain values for both new and aged materials. Because extruded HDPE properties vary in the hoop and axial directions and the properties are highly affected by temperature, specimens were cut in both the hoop and axial directions and were tested at temperatures ranging from 50° F to 180° F. This paper provides a description and overview of the PE 3408 cell class 345464C test program. In addition, an overview and summary of the test results for the PE 3408 cell class 345464C are provided.Copyright


ASME 2014 Pressure Vessels and Piping Conference | 2014

Determination of Updated Fatigue Properties of PE 4710 Cell Classification 445574C High Density Polyethylene

Timothy M. Adams; Shawn Nickholds; Douglas Munson; Jeffery Andrasik

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel piping with high density polyethylene (HDPE) is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs that carbon steel pipe and HDPE pipe has a much greater resistance to corrosion. The ASME Boiler and Pressure Vessel Code, Section III, Division 1 currently permits the use of non-metallic piping in buried safety Class 3 piping systems. Additionally, HDPE pipe has been successfully used in non-safety-related systems in nuclear power facilities and is commonly used in other industries such as water mains and natural gas pipelines. This report presents the results of updated fatigue testing of PE 4710 cell classification 445574C pipe compliant with the specific Code requirements. This information was developed to support and provide a strong technical basis for material properties of HDPE pipe for use in ASME Boiler and Pressure Vessel Code, Section III New Construction and Section XI repair or replacement activities. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process and waste water plants via its possible use in the B31 series piping codes. The report provides fatigue data in the form of Code S-N curves for fusion butt joints in PE 4710 cell classification 445574C HDPE pipe.Copyright


ASME 2014 Pressure Vessels and Piping Conference | 2014

Determination of Creep Properties of PE 4710 Cell Classification 445574C High Density Polyethylene

Timothy M. Adams; Shawn Nickholds; Douglas Munson; Jeffery Andrasik

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel piping with high density polyethylene (HDPE) is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs than carbon steel pipe and HDPE pipe has a much greater resistance to corrosion. The ASME Boiler and Pressure Vessel Code, Section III, Division 1 currently permits the use of non-metallic piping in buried safety Class 3 piping systems. Additionally, HDPE pipe has been successfully used in non-safety-related systems in nuclear power facilities and is commonly used in other industries such as water mains and natural gas pipelines. This paper presents the results of creep testing of PE 4710 cell classification 445574C pipe compliant with ASME Boiler and Pressure Vessel Code material requirements. This information was developed to support and provide a strong technical basis for material properties of HDPE pipe for use in ASME Boiler and Pressure Vessel Code, Section III New Construction and Section XI repair or replacement activities. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process and waste water plants via its possible use in the B31 series piping codes. The report provides long term creep and modulus data, as well as an analysis of the stress dependency of both.Copyright


Volume 2: Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues; Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes | 2013

Tensile Stress-Strain Properties and Elastic Modulus of PE 4710 Cell Classification 445574C High Density Polyethylene Pipe Material

Timothy M. Adams; Jie Wen; Shawn Nickholds; Douglas Munson

For corroded piping in low temperature systems replacement of buried carbon steel pipe with high density polyethylene (HDPE) pipe is a cost-effective solution. The ASME Boiler and Pressure Vessel Code, Section III, Division 1, Code Case N755-1 currently permits the use of HDPE in buried Safety Class 3 piping systems. This paper presents the results of tensile testing of PE 4710 cell classification 445574C pipe compliant with the requirements of Code Case N755-1. This information was developed to support and provide a strong technical basis for tensile properties of HDPE pipe. The data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process, and waste water plants via its possible use in the B31 series piping codes. The paper provides values for yield stress, yield strain, ultimate strain, and elastic modulus. The standard tensile tests were conducted consistent with the requirements of ASTM D638-10. Specimens were cut in the axial direction from cell composition PE 4710 cell classification 445574C HDPE piping spools. In addition, the results are compared to previous tensile testing conducted on the PE 3608 cell classification 345464C and PE 4710 cell classification 445474C HDPE materials.Copyright


ASME 2013 Pressure Vessels and Piping Conference | 2013

Long Term Performance of PE4710 Materials in Disinfectant Treated Nuclear Raw Water Systems

Alexander M. Summe; Douglas Munson; Kenneth Oliphant; Sarah Chung

Degradation of service water systems is a major issue facing nuclear power plants and many plants will require repair or replacement of existing carbon steel piping components. High-density polyethylene (HDPE) has been used in non-safety service water systems for over ten years and has demonstrated superior performance. However, there still exist knowledge gaps around material properties, inspectability, and long-term performance. Specifically, there is a lack of insight on the aging of HDPE piping in disinfectant treated service water systems. This paper summarizes the methodology and results of predicting the expected life time of HDPE piping exposed to oxidizing biocides in numerous end-use scenarios. The aging mechanism of concern is Stage III Chemical-Mechanical degradation, where the polymer is oxidized by biocides and then experiences slow crack growth (SCG). An Aging Model is used to provide general predictions of pipe service life. The results were analyzed for trends and limiting or sensitive operating parameters were identified. For most applications, the specific resin used in the model demonstrated good performance for lifetimes of well over 40 years.Copyright


Volume 4: Codes, Standards, Licensing, and Regulatory Issues; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Instrumentation and Co | 2012

Basis of the Fatigue Capacities, Stress Intensification Factors, and Flexibility Factors for High Density Polyethylene Pipe in the ASME Boiler and Pressure Vessel Code, Section III, Division 1

Timothy M. Adams; Douglas Munson

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel pipe with high density polyethylene (HDPE) pipe is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs than carbon steel pipe and HDPE pipe has a much greater resistance to corrosion. HDPE pipe has been successfully used in non-safety related systems in nuclear power facilities and is commonly used in other industries such as water mains and natural gas pipelines. Via Code Case N-755-1, the ASME Boiler and Pressure Vessel Code (BPVC), Section III, Division 1, currently permits the use of non-metallic HDPE piping in buried safety Class 3 piping systems. This paper presents the basis for the fatigue stress values to be used for HDPE in the ASME BPVC Section III, Division 1, Class 3 Construction. This information was developed based on testing support by the Electric Power Research Institute. Stress Intensification Factors (SIF) and flexibility factors for use in the design and analysis of HDPE piping systems in nuclear safety-related applications will be provided in the Code and the basis of these stress intensification and flexibility factors is provided. This data may also be useful for applications of HDPE pipe in commercial electric power generation facilities and chemical, process, and waste water plants via its possible use in the B31 series piping codes.Copyright


ASME 2012 Pressure Vessels and Piping Conference | 2012

Buried Piping: Managing the Challenge

Peter Angell; Michelle Moir; Douglas Munson; Mike Berger; Robert Barton

Nuclear utilities have many kilometres of piping buried in a relatively small physical area resulting in what has been called a “spaghetti bowl”. Until recently, much of this piping has been neglected and considered “out of sight / out of mind” therefore given a low operational impact. However, current failures have raised the profile of buried piping maintenance with both utilities and regulators.Buried piping programs face many of the challenges familiar to well run maintenance programs, but these challenges are compounded for a number of reasons. This paper will discuss how Atomic Energy of Canada Limited (AECL) Nuclear Laboratories have partnered with utilities, service providers, CANDU Owners Group (COG), and the Electric Power Research Institute (EPRI) to provide support to the development and implementation of maintenance programs for buried piping.Initially, AECL developed station strategy manuals to establish a mechanism to ensure a proficient ongoing program. As part of this program, extensive data on the systems was collected using station records. This data was then used to produce risk informed assessments, with the help of EPRI’s BPWORKS™ software, and ultimately the selection of inspection locations. Lessons learned from this work have not only been integrated into the station’s buried piping program, but also incorporated into improvements to the EPRI BPWORKS software.Copyright


ASME 2012 Pressure Vessels and Piping Conference | 2012

Dynamic Testing of High Density Polyethylene Vent and Drain Configurations

Douglas Munson; Timothy M. Adams; Shawn Nickholds

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel pipe with high density polyethylene (HDPE) pipe is a cost-effective solution. HDPE pipe can be installed at much lower labor costs than carbon steel pipe, and HDPE pipe has a much greater resistance to corrosion. This paper presents the results of the seismic testing of selected vent and drain configurations. This testing was conducted to provide proof of the conceptual design of HDPE vent and drain valve configurations. A total of eight representative models of HDPE vent and drain assemblies were designed. The models were subjected to seismic SQURTS spectral acceleration up to maximum shake table limits. The test configurations were then checked for leakage and operability of the valves. The results for these tests, along with the test configurations, are presented. Also presented are the acceleration data observed at various points on the test specimens.Copyright


ASME 2012 Pressure Vessels and Piping Conference | 2012

Determination of Material Damping Values for High Density Polyethylene Pipe Materials

Douglas Munson; Timothy M. Adams; Siegrid Hall

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel pipe with High Density Polyethylene pipe is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs than carbon steel pipe and High Density Polyethylene pipe has a much greater resistance to corrosion. This paper presents the results of Electric Power Research Institute sponsored testing to determine material damping values for High Density Polyethylene pipe material. This was determined by experimental methods using the log decrement approach. Cantilevered beam samples were deflected, released and the resulting free vibration response was recorded. The possible relationship of the damping value to the natural frequency and the stress level of the test samples is also studied. The results of the testing are presented along with suggested damping values to be used in the seismic analysis of High Density Polyethylene piping.Copyright


ASME 2012 Pressure Vessels and Piping Conference | 2012

Determination of Tensile Elastic Modulus in High Density Polyethylene Piping at Seismic Strain Rates

Douglas Munson; Timothy M. Adams; Shawn Nickholds

For corroded piping in low temperature systems, such as service water systems in nuclear power plants, replacement of carbon steel pipe with High Density Polyethylene pipe is a cost-effective solution. Polyethylene pipe can be installed at much lower labor costs than carbon steel pipe and High Density Polyethylene pipe has a much greater resistance to corrosion. Data was developed by the three testing tasks for use in the seismic design of above ground High Density Polyethylene Piping systems. This paper presents the results of testing to determine the relationship between tensile elastic modulus and strain rates commensurate with seismic loading. This is accomplished by first establishing a seismic strain rate for High Density Polyethlene using detailed finite element analysis. The results of this analysis are used to establish a test matrix tensile testing. Next, tensile tests are conducted using standard ASTM D-638 Type III tensile specimens. The tensile testing is conducted at three pull speeds to establish a basic relationship between tensile elastic modulus and strain rates. This relationship is then used to calculate the modulus at the strain rates expected under seismic loading. This paper presents the results of this testing and the suggested tensile modulus for use in seismic analysis.Copyright

Collaboration


Dive into the Douglas Munson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shane J. Findlan

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Angell

Chalk River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Alexander M. Summe

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Moir

Chalk River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mike Berger

Ontario Power Generation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge