Douglas R. Corfield
Keele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas R. Corfield.
The Journal of Physiology | 2000
Hugo D. Critchley; Douglas R. Corfield; M. P. Chandler; Christopher J. Mathias; R. J. Dolan
States of peripheral autonomic arousal accompany emotional behaviour, physical exercise and cognitive effort, and their central representation may influence decision making and the regulation of social and emotional behaviours. However, the cerebral functional neuroanatomy representing and mediating peripheral autonomic responses in humans is poorly understood. Six healthy volunteer subjects underwent H215O positron emission tomography (PET) scanning while performing isometric exercise and mental arithmetic stressor tasks, and during corresponding control tasks. Mean arterial blood pressure (MAP) and heart rate (HR) were monitored during scanning. Data were analysed using statistical parametric mapping (SPM99). Conjunction analyses were used to determine significant changes in regional cerebral blood flow (rCBF) during states of cardiovascular arousal common to both exercise and mental stressor tasks. Exercise and mental stressor tasks, relative to their control tasks, were associated with significantly (P < 0.001) increased MAP and HR. Significant common activations (increased rCBF) were observed in cerebellar vermis, brainstem and right anterior cingulate. In both exercise and mental stress tasks, increased rCBF in cerebellar vermis, right anterior cingulate and right insula covaried with MAP; rCBF in pons, cerebellum and right insula covaried with HR. Cardiovascular arousal in both categorical and covariance analyses was associated with decreased rCBF in prefrontal and medial temporal regions. Neural responses in discrete brain regions accompany peripheral cardiovascular arousal. We provide evidence for the involvement of areas previously implicated in cognitive and emotional behaviours in the representation of peripheral autonomic states, consistent with a functional organization that produces integrated cardiovascular response patterns in the service of volitional and emotional behaviours.
Sleep Medicine | 2003
Mary J. Morrell; Donald McRobbie; Rebecca A. Quest; A. R. C. Cummin; Ramesh Ghiassi; Douglas R. Corfield
OBJECTIVE Obstructive sleep apnea (OSA) causes hypoxemia and fragmented sleep, which lead to neurocognitive deficits. We hypothesised that focal loss of cortical gray matter generally within areas associated with memory processing and learning and specifically within the hippocampus would occur in OSA. METHODS Voxel-based morphometry, an automated processing technique for magnetic resonance images, was used to characterise structural changes in gray matter in seven right handed, male patients with newly diagnosed OSA and seven non-apneic, male controls matched for handedness and age. RESULTS The analysis revealed a significantly lower gray matter concentration within the left hippocampus (p=0.004) in the apneic patients. No further significant focal gray matter differences were seen in the right hippocampus and in other brain regions. There was no difference in total gray matter volume between apneics and controls. CONCLUSION This preliminary report indicates changes in brain morphology in OSA, in the hippocampus, a key area for cognitive processing.
NeuroImage | 2001
Ralf Deichmann; Oliver Josephs; Chloe Hutton; Douglas R. Corfield; Robert Turner
Gradient-echo echo-planar imaging is a standard technique in functional magnetic resonance imaging (fMRI) experiments based on the blood oxygenation level-dependent (BOLD) effect. A major problem is the occurrence of susceptibility gradients near air/tissue interfaces. As a consequence, the detection of neuronal activation may be greatly compromised in certain brain areas, especially in the temporal lobes and in the orbitofrontal cortex. Common approaches to overcome this problem, such as z-shimming or the use of tailored radio frequency pulses, usually compensate only for susceptibility gradients in the slice selection direction. In the present study, the influence of susceptibility gradients in the phase encoding direction is investigated both theoretically and experimentally. It is shown that these gradients influence the effective echo time TE and may reduce considerably the local BOLD sensitivity, even in the case of acceptable image intensities. A compensation method is proposed and tested in an fMRI experiment based on a hypercapnic challenge. The results suggest that the compensation method allows for the detection of activation in brain areas which are usually unavailable for BOLD studies.
The Journal of Physiology | 1995
Douglas R. Corfield; Gereon R. Fink; Stuart Ramsay; Kevin G. Murphy; H. R. Harty; J. D. G. Watson; Lewis Adams; R. S. J. Frackowiak; A. Guz
1. The role of supra‐brainstem structures in the ventilatory response to inhaled CO2 is unknown. The present study uses positron emission tomography (PET), with infusion of H2(15)O, to measure changes in relative regional cerebral blood flow (rCBF) in order to identify sites of increased neuronal activation during CO2‐stimulated breathing (CO2‐SB) in awake man. 2. Five male volunteers were scanned during CO2‐SB (mean +/‐ S.E.M.; end‐tidal PCO2, 50.3 +/‐ 1.7 mmHg; respiratory frequency, 16.4 +/‐ 2.7 min‐1; tidal volume, 1.8 +/‐ 0.2 l). As control, scans were performed during ‘passive’ isocapnic (elevated fraction of inspired CO2) positive pressure ventilation (end‐tidal PCO2, 38.4 +/‐ 1.0 mmHg; respiratory frequency, 15.5 +/‐ 2.2 min‐1; tidal volume, 1.6 +/‐ 0.2 l). With CO2‐SB, all subjects reported dyspnoea. 3. The anatomical locations of the increases in relative rCBF (CO2‐SB versus control) were obtained using magnetic resonance imaging. 4. Group analysis identified neuronal activation within the upper brainstem, midbrain and hypothalamus, thalamus, hippocampus and parahippocampus, fusiform gyrus, cingulate area, insula, frontal cortex, temporo‐occipital cortex and parietal cortex. No neuronal activation was seen within the primary motor cortex (at sites previously shown to be associated with volitional breathing). 5. These results suggest neuronal activation within the limbic system; this activation may be important in the sensory and/or motor respiratory responses to hypercapnia in awake man.
The Journal of Physiology | 1995
Gereon R. Fink; L Adams; J. D. G. Watson; J A Innes; B Wuyam; I Kobayashi; Douglas R. Corfield; K Murphy; T Jones; R S Frackowiak
1. The neurophysiological basis for the increase in breathing associated with exercise remains obscure. The present study uses positron emission tomography (PET) to measure relative regional cerebral blood flow (rCBF) in order to identify sites of increased neuronal activation during and immediately following exercise. 2. Male volunteers underwent H2(15)O PET scanning during two complementary studies. Firstly, six subjects performed right leg exercise, adequate to increase oxygen uptake 2.5‐fold. Secondly, five different subjects were scanned immediately following bicycle exercise (adequate to increase oxygen uptake 5‐fold) while breathing was still increased. In each study, as a control, scanning was also performed during matched passive isocapnic positive pressure ventilation; additionally, in the first study, passive right leg movement was performed. 3. Increases in relative rCBF were obtained in each individual and co‐registered with their magnetic resonance image of the brain defining individual gyral morphology. 4. During exercise, individual and group analysis revealed significant relative rCBF increases in the left and right superomedial primary motor cortex (the motor cortical ‘leg’ areas) and also in the left and right superolateral primary motor cortex in areas previously shown to be associated with volitional breathing. After exercise, there was no significant increase in relative rCBF in the superomedial areas but such increases were still present bilaterally in the superolateral areas which had been activated during the exercise. Other relative rCBF increases were also found, both during and after exercise, in cortical and subcortical areas known to be involved in motor control. 5. The results from PET scans during and after exercise, taken together, provide evidence for motor cortical involvement in the exercise‐related hyperpnoea in man.
NeuroImage | 2001
Douglas R. Corfield; Kevin G. Murphy; Oliver Josephs; Lewis Adams; Robert Turner
Increases in cerebral blood flow produced by vasoactive agents will increase blood oxygen level-dependent (BOLD) MRI signal intensity. The effects of such vasodilation on activation-related signal changes are incompletely characterized. The two signal changes may be simply additive or there may be more a complex interaction. To investigate this, BOLD MRI was performed in four normal male subjects using T2*-weighted echo planar imaging; brain volumes were acquired every 6.2 s, using a Siemens VISION scanner operating at 2 Tesla; each volume consisted of 64 sequential transverse slices (64 x 64 pixels per slice, 3 x 3 x 3 mm). Sixteen periods of visual stimulation were produced using a flickering checkerboard (8 Hz, 31 s On/31 s Off); this was coupled with five periods of hypercapnia (4% inspired CO(2), 62 s On/124 s Off). Data were analyzed using SPM96. Mean signal intensity, calculated globally for the whole brain, closely mirrored changes in the partial pressure of end-tidal CO(2) (PCO(2)), and hypercapnia was associated with widespread significant signal increases (P < 0.001), predominantly within grey matter. As expected, the visual stimulation produced significant signal changes within the occipital cortex (P < 0.001). Within the occipital cortex, no significant interactions (P > 0.001) between the effects of the visual stimulation and PCO(2) were present. The increases in PCO(2) imposed dynamically in the present study would increase cerebral blood flow by between 25 and 40%, an increase within the physiological range and comparable to that induced by neural activation. With this flow change the effects of vasodilation, on an activation-related signal change, are simply additive.
The Journal of Neuroscience | 2009
Kyle T.S. Pattinson; Ricardo Jose Moylan Governo; Bradley J. MacIntosh; Elizabeth C. Russell; Douglas R. Corfield; Irene Tracey; Richard Geoffrey Wise
Respiratory depression limits provision of safe opioid analgesia and is the main cause of death in drug addicts. Although opioids are known to inhibit brainstem respiratory activity, their effects on cortical areas that mediate respiration are less well understood. Here, functional magnetic resonance imaging was used to examine how brainstem and cortical activity related to a short breath hold is modulated by the opioid remifentanil. We hypothesized that remifentanil would differentially depress brain areas that mediate sensory-affective components of respiration over those that mediate volitional motor control. Quantitative measures of cerebral blood flow were used to control for hypercapnia-induced changes in blood oxygen level-dependent (BOLD) signal. Awareness of respiration, reflected by an urge-to-breathe score, was profoundly reduced with remifentanil. Urge to breathe was associated with activity in the bilateral insula, frontal operculum, and secondary somatosensory cortex. Localized remifentanil-induced decreases in breath hold-related activity were observed in the left anterior insula and operculum. We also observed remifentanil-induced decreases in the BOLD response to breath holding in the left dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, and periaqueductal gray, brain areas that mediate task performance. Activity in areas mediating motor control (putamen, motor cortex) and sensory-motor integration (supramarginal gyrus) were unaffected by remifentanil. Breath hold-related activity was observed in the medulla. These findings highlight the importance of higher cortical centers in providing contextual awareness of respiration that leads to appropriate modulation of respiratory control. Opioids have profound effects on the cortical centers that control breathing, which potentiates their actions in the brainstem.
Thorax | 2010
Mary J. Morrell; Ml Jackson; G. L. Twigg; Ramesh Ghiassi; Dw McRobbie; Ra Quest; Heath R. Pardoe; Gaby S. Pell; David F. Abbott; Peter D. Rochford; Graeme D. Jackson; Robert J. Pierce; Fergal J. O'Donoghue; Douglas R. Corfield
Background Obstructive sleep apnoea (OSA) is a common disease that leads to daytime sleepiness and cognitive impairment. Attempts to investigate changes in brain morphology that may underlie these impairments have led to conflicting conclusions. This study was undertaken to aim to resolve this confusion, and determine whether OSA is associated with changes in brain morphology in a large group of patients with OSA, using improved voxel-based morphometry analysis, an automated unbiased method of detecting local changes in brain structure. Methods 60 patients with OSA (mean apnoea hypopnoea index 55 (95% CI 48 to 62) events/h, 3 women) and 60 non-apnoeic controls (mean apnoea hypopnoea index 4 (95% CI 3 to 5) events/h, 5 women) were studied. Subjects were imaged using T1-weighted 3-D structural MRI (69 subjects at 1.5 T, 51 subjects at 3 T). Differences in grey matter were investigated in the two groups, controlling for age, sex, site and intracranial volume. Dedicated cerebellar analysis was performed on a subset of 108 scans using a spatially unbiased infratentorial template. Results Patients with OSA had a reduction in grey matter volume in the right middle temporal gyrus compared with non-apnoeic controls (p<0.05, corrected for topological false discovery rate across the entire brain). A reduction in grey matter was also seen within the cerebellum, maximal in the left lobe VIIIb close to XI, extending across the midline into the right lobe. Conclusion These data show that OSA is associated with focal loss of grey matter that could contribute to cognitive decline. Specifically, lesions in the cerebellum may result in both motor dysfunction and working memory deficits, with downstream negative consequences on tasks such as driving.
NeuroImage | 2008
Leanne C. McKay; Lewis Adams; Richard S. J. Frackowiak; Douglas R. Corfield
Few tasks are simpler to perform than a breath hold; however, the neural basis underlying this voluntary inhibitory behaviour, which must suppress spontaneous respiratory motor output, is unknown. Here, using blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI), we investigated the neural network responsible for volitional breath holding in 8 healthy humans. BOLD images of the whole brain (156 brain volumes, voxel resolution 3x3x3 mm) were acquired every 5.2 s. All breath holds were performed for 15 s at resting expiratory lung volume when respiratory musculature was presumed to be relaxed, which ensured that the protocol highlighted the inhibitory components underlying the breath hold. An experimental paradigm was designed to dissociate the time course of the whole-brain BOLD signal from the time course of the local, neural-related BOLD signal associated with the inhibitory task. We identified a bilateral network of cortical and subcortical structures including the insula, basal ganglia, frontal cortex, parietal cortex and thalamus, which are in common with response inhibition tasks, and in addition, activity within the pons. From these results we speculate that the pons has a role in integrating information from supra-brainstem structures, and in turn it exerts an inhibitory effect on medullary respiratory neurones to inhibit breathing during breath holding.
PLOS ONE | 2013
Ivana Rosenzweig; Matthew J. Kempton; William R. Crum; Martin Glasser; Milan Milošević; Sándor Beniczky; Douglas R. Corfield; Steven Williams; Mary J. Morrell
The full impact of multisystem disease such as obstructive sleep apnoea (OSA) on regions of the central nervous system is debated, as the subsequent neurocognitive sequelae are unclear. Several preclinical studies suggest that its purported major culprits, intermittent hypoxia and sleep fragmentation, can differentially affect adult hippocampal neurogenesis. Although the prospective biphasic nature of chronic intermittent hypoxia in animal models of OSA has been acknowledged, so far the evidence for increased ‘compensatory’ neurogenesis in humans is uncertain. In a cross-sectional study of 32 patients with mixed severity OSA and 32 non-apnoeic matched controls inferential analysis showed bilateral enlargement of hippocampi in the OSA group. Conversely, a trend for smaller thalami in the OSA group was noted. Furthermore, aberrant connectivity between the hippocampus and the cerebellum in the OSA group was also suggested by the correlation analysis. The role for the ischemia/hypoxia preconditioning in the neuropathology of OSA is herein indicated, with possible further reaching clinical implications.