Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas R. Keene is active.

Publication


Featured researches published by Douglas R. Keene.


Molecular Cell | 2002

Hfq: A Bacterial Sm-like Protein that Mediates RNA-RNA Interaction

Thorleif Møller; Thomas Franch; Peter Højrup; Douglas R. Keene; Hans Peter Bächinger; Richard G. Brennan; Poul Valentin-Hansen

The bacterial Hfq protein modulates the stability or the translation of mRNAs and has recently been shown to interact with small regulatory RNAs in E. coli. Here we show that Hfq belongs to the large family of Sm and Sm-like proteins: it contains a conserved sequence motif, known as the Sm1 motif, forms a doughnut-shaped structure, and has RNA binding specificity very similar to the Sm proteins. Moreover, we provide evidence that Hfq strongly cooperates in intermolecular base pairing between the antisense regulator Spot 42 RNA and its target RNA. We speculate that Sm proteins in general cooperate in bimolecular RNA-RNA interaction and that protein-mediated complex formation permits small RNAs to interact with a broad range of target RNAs.


Development | 2007

Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons

Nicholas D. Murchison; Brian A. Price; David A. Conner; Douglas R. Keene; Eric N. Olson; Clifford J. Tabin; Ronen Schweitzer

The scleraxis (Scx) gene, encoding a bHLH transcription factor, is expressed in the progenitors and cells of all tendon tissues. To determine Scx function, we produced a mutant null allele. Scx-/- mice were viable, but showed severe tendon defects, which manifested in a drastically limited use of all paws and back muscles and a complete inability to move the tail. Interestingly, although the differentiation of all force-transmitting and intermuscular tendons was disrupted, other categories of tendons, the function of which is mainly to anchor muscles to the skeleton, were less affected and remained functional, enabling the viability of Scx-/- mutants. The force-transmitting tendons of the limbs and tail varied in the severity to which they were affected, ranging from dramatic failure of progenitor differentiation resulting in the loss of segments or complete tendons, to the formation of small and poorly organized tendons. Tendon progenitors appeared normal in Scx-/- embryos and a phenotype resulting from a failure in the condensation of tendon progenitors to give rise to distinct tendons was first detected at embryonic day (E)13.5. In the tendons that persisted in Scx-/- mutants, we found a reduced and less organized tendon matrix and disorganization at the cellular level that led to intermixing of tenocytes and endotenon cells. The phenotype of Scx-/- mutants emphasizes the diversity of tendon tissues and represents the first molecular insight into the important process of tendon differentiation.


The EMBO Journal | 2002

Lack of collagen XVIII/endostatin results in eye abnormalities

Naomi Fukai; Lauri Eklund; Alexander G. Marneros; Suk Paul Oh; Douglas R. Keene; Lawrence Tamarkin; Merja Niemelä; Mika Ilves; En Li; Taina Pihlajaniemi; Björn Olsen

Mice lacking collagen XVIII and its proteolytically derived product endostatin show delayed regression of blood vessels in the vitreous along the surface of the retina after birth and lack of or abnormal outgrowth of retinal vessels. This suggests that collagen XVIII/endostatin is critical for normal blood vessel formation in the eye. All basement membranes in wild‐type eyes, except Descemets membrane, showed immunogold labeling with antibodies against collagen XVIII. Labeling at sites where collagen fibrils in the vitreous are connected with the inner limiting membrane and separation of the vitreal matrix from the inner limiting membrane in mutant mice indicate that collagen XVIII is important for anchoring vitreal collagen fibrils to the inner limiting membrane. The findings provide an explanation for high myopia, vitreoretinal degeneration and retinal detachment seen in patients with Knobloch syndrome caused by loss‐of‐function mutations in collagen XVIII.


Journal of Clinical Investigation | 2004

Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome

Daniel P. Judge; Nancy Jensen Biery; Douglas R. Keene; Jessica Geubtner; Loretha Myers; David L. Huso; Lynn Y. Sakai; Harry C. Dietz

Marfan syndrome is a connective tissue disorder caused by mutations in the gene encoding fibrillin-1 (FBN1). A dominant-negative mechanism has been inferred based upon dominant inheritance, mulitimerization of monomers to form microfibrils, and the dramatic paucity of matrix-incorporated fibrillin-1 seen in heterozygous patient samples. Yeast artificial chromosome-based transgenesis was used to overexpress a disease-associated mutant form of human fibrillin-1 (C1663R) on a normal mouse background. Remarkably, these mice failed to show any abnormalities of cellular or clinical phenotype despite regulated overexpression of mutant protein in relevant tissues and developmental stages and direct evidence that mouse and human fibrillin-1 interact with high efficiency. Immunostaining with a human-specific mAb provides what we believe to be the first demonstration that mutant fibrillin-1 can participate in productive microfibrillar assembly. Informatively, use of homologous recombination to generate mice heterozygous for a comparable missense mutation (C1039G) revealed impaired microfibrillar deposition, skeletal deformity, and progressive deterioration of aortic wall architecture, comparable to characteristics of the human condition. These data are consistent with a model that invokes haploinsufficiency for WT fibrillin-1, rather than production of mutant protein, as the primary determinant of failed microfibrillar assembly. In keeping with this model, introduction of a WT FBN1 transgene on a heterozygous C1039G background rescues aortic phenotype.


The New England Journal of Medicine | 2010

Bone Marrow Transplantation for Recessive Dystrophic Epidermolysis Bullosa

John E. Wagner; Akemi Ishida-Yamamoto; John A. McGrath; Maria K. Hordinsky; Douglas R. Keene; Megan Riddle; Mark J. Osborn; Troy C. Lund; Michelle Dolan; Bruce R. Blazar; Jakub Tolar

BACKGROUND Recessive dystrophic epidermolysis bullosa is an incurable, often fatal mucocutaneous blistering disease caused by mutations in COL7A1, the gene encoding type VII collagen (C7). On the basis of preclinical data showing biochemical correction and prolonged survival in col7 −/− mice, we hypothesized that allogeneic marrow contains stem cells capable of ameliorating the manifestations of recessive dystrophic epidermolysis bullosa in humans. METHODS Between October 2007 and August 2009, we treated seven children who had recessive dystrophic epidermolysis bullosa with immunomyeloablative chemotherapy and allogeneic stem-cell transplantation. We assessed C7 expression by means of immunofluorescence staining and used transmission electron microscopy to visualize anchoring fibrils. We measured chimerism by means of competitive polymerase-chain-reaction assay, and documented blister formation and wound healing with the use of digital photography. RESULTS One patient died of cardiomyopathy before transplantation. Of the remaining six patients, one had severe regimen-related cutaneous toxicity, with all having improved wound healing and a reduction in blister formation between 30 and 130 days after transplantation. We observed increased C7 deposition at the dermal-epidermal junction in five of the six recipients, albeit without normalization of anchoring fibrils. Five recipients were alive 130 to 799 days after transplantation; one died at 183 days as a consequence of graft rejection and infection. The six recipients had substantial proportions of donor cells in the skin, and none had detectable anti-C7 antibodies. CONCLUSIONS Increased C7 deposition and a sustained presence of donor cells were found in the skin of children with recessive dystrophic epidermolysis bullosa after allogeneic bone marrow transplantation. Further studies are needed to assess the long-term risks and benefits of such therapy in patients with this disorder. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00478244.)


The EMBO Journal | 1994

Peroxidasin: a novel enzyme-matrix protein of Drosophila development.

Robert E. Nelson; Liselotte I. Fessler; Y Takagi; Bruce Blumberg; Douglas R. Keene; P F Olson; Parker Cg; John H. Fessler

Peroxidasin is a novel protein combining peroxidase and extracellular matrix motifs. Hemocytes differentiate early from head mesoderm, make peroxidasin and later phagocytose apoptotic cells. As hemocytes spread throughout the embryo, they synthesize extracellular matrix and peroxidasin, incorporating it into completed basement membranes. Cultured cells secrete peroxidasin; it occurs in larvae and adults. Each 1512 residue chain of the three‐armed, disulfide‐linked homotrimer combines a peroxidase domain with six leucine‐rich regions, four Ig loops, a thrombospondin/procollagen homology and an amphipathic alpha‐helix. The peroxidase domain is homologous with human myeloperoxidase and eosinophil peroxidase. This heme protein catalyzes H2O2‐driven radioiodinations, oxidations and formation of dityrosine. We propose that peroxidasin functions uniquely in extracellular matrix consolidation, phagocytosis and defense.


Journal of Biological Chemistry | 1997

Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen

Huey Ju Kuo; Cheryl L. Maslen; Douglas R. Keene; Robert W. Glanville

Type VI collagen filaments are found associated with interstitial collagen fibers, around cells, and in contact with endothelial basement membranes. To identify type VI collagen binding proteins, the amino-terminal domains of the α1(VI) and α2(VI) chains and a part of the carboxyl-terminal domain of the α3(VI) chain were used as bait in a yeast two-hybrid system to screen a human placenta library. Eight persistently positive clones were identified, two coding the known matrix proteins fibronectin and basement membrane type IV collagen and the rest coding new proteins. The amino-terminal domain of α1(VI) was shown to interact with the carboxyl-terminal globular domain of type IV collagen. The specificity of this interaction was further studied using the yeast two-hybrid system in a one-on-one format and confirmed by using isolated protein domains in immunoprecipitation, affinity blots, and enzyme-linked immunosorbent assay-based binding studies. Co-distribution of type VI and type IV collagens in human muscle was demonstrated using double labeling immunofluorescent microscopy and immunoelectron microscopy. The strong interaction of type VI collagen filaments with basement membrane collagen provided a possible molecular pathogenesis for the heritable disorder Bethlem myopathy.


Journal of Biological Chemistry | 2000

Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain

Satoshi Amano; Ian C. Scott; Kazuhiko Takahara; Manuel Koch; Marie-France Champliaud; Donald R. Gerecke; Douglas R. Keene; David L. Hudson; Toshio Nishiyama; Seungbok Lee; Daniel S. Greenspan; Robert E. Burgeson

Epithelial cells maintained in culture medium containing low calcium proteolytically process laminin 5 (α3β3γ2) within the α3 and γ2 chains (1). Experiments were designed to identify the enzyme(s) responsible for the laminin 5 processing and the sites of proteolytic cleavage. To characterize the nature of laminin 5 processing, we determined the N-terminal amino acid sequences of the proteolytic fragments produced by the processing events. The results indicate that the first α3 chain cleavage (200-l65 kDa α3) occurs within subdomain G4 of the G domain. The second cleavage (l65-l45 kDa α3) occurs within the lIla domain, 11 residues N-terminal to the start of domain II. The γ chain is cleaved within the second epidermal growth factor-like repeat of domain Ill. The sequence cleaved within the γ2 chain matches the consensus sequence for the cleavage of type I, II, and III procollagens by bone morphogenetic protein-1 (BMP-1), also known as type I procollagen C-proteinase (2). Recombinant BMP-1 cleaves γ2 in vitro,both within intact laminin 5 and at the predicted site of a recombinant γ2 short arm. α3 is also cleaved by BMP-1 in vitro, but the cleavage site is yet to be determined. These results show the laminin α3 and γ2 chains to be substrates for BMP-1 in vitro. We speculate that γ2 cleavage is required for formation of the laminin 5–6 complex and that this complex is directly involved in assembly of the interhemidesmosomal basement membrane. This further suggests that BMP-1 activity facilitates basement membrane assembly, but not hemidesmosome assembly, in the laminin 5-rich dermal-epidermal junction basement membrane in vivo.


Journal of Biological Chemistry | 1996

Fibrillin-1 and Fibulin-2 Interact and Are Colocalized in Some Tissues

Dieter P. Reinhardt; Takako Sasaki; Bette J. Dzamba; Douglas R. Keene; Walter Göhring; Rupert Timpl; Lynn Y. Sakai

Microfibrils 10-12 nm in diameter are found in elastic and non-elastic tissues with fibrillin as a major component. Little is known about the supramolecular structure of these microfibrils and the protein interactions it is based on. To identify protein binding ligands of fibrillin-1, we tested binding of recombinant fibrillin-1 peptides to different extracellular matrix proteins in solid phase assays. Among the proteins tested, only fibulin-2 showed significant binding to rF11, the N-terminal half of fibrillin-1, in a calcium-dependent manner. Surface plasmon resonance demonstrated high affinity binding with a Kd = 56 nM. With overlapping recombinant fibrillin-1 peptides, the binding site for fibulin-2 was narrowed down to the N terminus of fibrillin-1 (amino acid positions 45-450). Immunofluorescence in tissues demonstrated colocalization of fibrillin and fibulin-2 in skin, perichondrium, elastic intima of blood vessels, and kidney glomerulus. Fibulin-2 was not present in ocular ciliary zonules, tendon, and the connective tissue around kidney tubules and lung alveoli, which all contain fibrillin. Immunogold labeling of fibulin-2 on microfibrils in skin was found preferentially at the interface between microfibrils and the amorphous elastin core, suggesting that in vivo the interaction between fibrillin-1 and fibulin-2 is regulated by cellular expression and deposition as well as by protein-protein interactions.


Journal of Biological Chemistry | 2000

Decorin Binds Near the C Terminus of Type I Collagen

Douglas R. Keene; James D. San Antonio; Richard Mayne; David J. McQuillan; George Sarris; Samuel A. Santoro; Renato V. Iozzo

Decorin belongs to a family of small leucine-rich proteoglycans that are directly involved in the control of matrix organization and cell growth. Genetic evidence indicates that decorin is required for the proper assembly of collagenous matrices. Here, we sought to establish the precise binding site of decorin on type I collagen. Using rotary shadowing electron microscopy and photoaffinity labeling, we mapped the binding site of decorin protein core to a narrow region near the C terminus of type I collagen. This region is located within the cyanogen bromide peptide fragment α1(I) CB6 and is ∼25 nm from the C terminus, in a zone that coincides with the c1 band of the collagen fibrild-period. This location is very close to one of the major intermolecular cross-linking sites of collagen heterotrimers. Thus, decorin protein core possesses a unique binding specificity that could potentially regulate collagen fibril stability.

Collaboration


Dive into the Douglas R. Keene's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara F. Tufa

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar

David T. Woodley

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Mei Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hans Peter Bächinger

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noe L. Charbonneau

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge