Douglas R. Sommerville
Edgewood Chemical Biological Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas R. Sommerville.
Inhalation Toxicology | 2004
Anthony Js; Haley M; Manthei J; Way R; David C. Burnett; Gaviola B; Douglas R. Sommerville; Crosier R; Robert J. Mioduszewski; Sandra A. Thomson; Charles L. Crouse; Kathy L. Matson
The inhalation toxicity of cyclohexyl methylphosphonofluoridate (GF) was examined in male and female Sprague-Dawley rats exposed by whole body in a dynamic 750-L chamber. The objectives of this study were to (1) generate GF vapor in a dynamic inhalation chamber system, starting in the lethal to near-lethal concentration range, (2) examine dose-response effects of inhaled GF vapor and analyze the relationship between concentration (C) and exposure duration (T) in determining probability of lethality, and (3) establish a lethal potency ratio between GF and the more volatile agent Sarin (GB). Using a syringe pump, GF vapor concentrations were generated for exposure times of 10, 60, and 240 min. Dose-response curves with associated slopes were determined for each exposure duration by the Bliss probit method. GF vapor exposures were associated with sublethal clinical signs such as tremors, convulsions, salivation, and miosis. Concentration-exposure time values for lethality in 50% of the exposed population (LCT(50)) were calculated for 24-h and 14-day postexposure periods for 10-, 60-, and 240-min exposures. In general, LCT(50) values were lower in female rats than males and increased with exposure duration; that is, CT was not constant over time. The GF LCT(50) values for female rats were 253 mg min/m(3) at 10 min, 334 mg min/m(3) at 60 min, and 533 mg min/m(3) at 240 min, while the values for males were 371, 396, and 585 mg min/m(3), respectively. The GB LCT(50) values for female rats were 235 mg min/m(3) at 10 min, 355 mg min/m(3) at 60 min, and 840 mg min/m(3) at 240 min, while the values for males were 316, 433, and 1296 mg min/m(3), respectively. At longer exposure durations, the LCT(50) for GF was less than that found for GB but at shorter exposure durations, the LCT(50) for GF was more than that found for GB. Empirical models, consisting of the toxic load model plus higher order terms, were developed and successfully fit to the data.
Inhalation Toxicology | 2006
Bernard J. Benton; Jeffrey M. McGuire; Douglas R. Sommerville; Paul A. Dabisch; Edward M. Jakubowski; Kathy L. Matson; Robert J. Mioduszewski; Sandra A. Thomson; Charles L. Crouse
Male and female rats were whole-body exposed to VX vapor in a 1000-L single-pass exposure chamber. Estimated exposure dosages producing lethal (LCT50) effects in 50% of exposed male and female rats were established for 10, 60, and 240 min exposure durations. A potency comparison with GB and GF shows that VX becomes increasingly more potent than these G agents with increasing exposure duration. VX is approximately 4–30 times more potent than GB and 5–15 times more potent than GF. Gender differences in the estimated median dosages were not significant at the 10, 60, and 240 min exposure durations. An empirical toxic load model was developed and the toxic load exponent for lethality (n) in the equation Cn× T = k was determined to be n = 0.92. The VX–G regeneration assay was successfully used as a biomarker for the presence of VX in the blood plasma and RBC fractions of the blood 24 h postexposure.
Cutaneous and Ocular Toxicology | 2008
Paul A. Dabisch; Michael S. Horsmon; James T. Taylor; William T. Muse; Dennis B. Miller; Douglas R. Sommerville; Robert J. Mioduszewski; Sandra A. Thomson
The present study was undertaken to investigate the miotic potency of soman vapor in the rat, as well as gender differences in the miotic response to soman vapor that have been reported previously for other nerve agents. The results of the present study demonstrate that the miotic potency of soman vapor is significantly less than that of other nerve agents, and that female rats are 2.5–3.0 times more sensitive to soman vapor than male rats. The results also demonstrate that ocular acetylcholinesterase and butyrylcholinesterase activities differ between males and females, although this difference is not likely large enough to account for the observed gender difference.
Inhalation Toxicology | 2014
Stanley W. Hulet; Douglas R. Sommerville; Dennis B. Miller; Jacqueline A. Scotto; William T. Muse; David C. Burnett
Abstract Sexually mature male and female Gottingen minipigs were exposed to various concentrations of GB and GF vapor via whole-body inhalation exposures or to liquid GB or GF via intravenous or subcutaneous injections. Vapor inhalation exposures were for 10, 60 or 180 min. Maximum likelihood estimation was used to calculate the median effect levels for severe effects (ECT50 and ED50) and lethality (LCT50 and LD50). Ordinal regression was used to model the concentration × time profile of the agent toxicity. Contrary to that predicted by Haber’s rule, LCT50 values increased as the duration of the exposures increased for both nerve agents. The toxic load exponents (n) were calculated to be 1.38 and 1.28 for GB and GF vapor exposures, respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GB in male minipigs were 73, 106 and 182 mg min/m3, respectively. LCT50 values for 10-, 60 - and 180-min exposures to vapor GB in female minipigs were 87, 127 and 174 mg min/m3, respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GF in male minipigs were 218, 287 and 403 mg min/m3, respectively. LCT50 values for 10-, 60- and 180-min exposures in female minipigs were 183, 282 and 365 mg min/m3, respectively. For GB vapor exposures, there was a tenuous gender difference which did not exist for vapor GF exposures. Surprisingly, GF was 2–3 times less potent than GB via the inhalation route of exposure regardless of exposure duration. Additionally GF was found to be less potent than GB by intravenous and subcutaneous routes.
Toxicological Sciences | 2002
Robert J. Mioduszewski; J. Manthei; R. Way; D. Burnett; B. Gaviola; William T. Muse; Sandra A. Thomson; Douglas R. Sommerville; R. Crosier
Inhalation Toxicology | 2006
Stanley W. Hulet; Douglas R. Sommerville; Ronald B. Crosier; Paul A. Dabisch; Dennis B. Miller; Bernard J. Benton; Jeffry S. Forster; Jacqueline A. Scotto; Jill R. Jarvis; Candice L. Krauthauser; William T. Muse; Sharon A. Reutter; Robert J. Mioduszewski; Sandra A. Thomson
Archive | 2005
Kathy L. Matson; Charles L. Crouse; Dennis B. Miller; Ronald A. Evans; Jeffrey M. McGuire; Jill R. Jarvis; Bernard J. Benton; Douglas R. Sommerville; Jacqueline A. Scotto; David C. Burnett
Toxicological Sciences | 2014
Lisa M. Sweeney; Douglas R. Sommerville; Stephen R. Channel
Archive | 2006
Stanley W. Hulet; Douglas R. Sommerville; Edward M. Jakubowski; Bernard J. Benton; Jeffry S. Forster; Paul A. Dabisch; Jacqueline A. Scotto; Ronald B. Crosier; William T. Muse; Bernardita I. Gaviola; David C. Burnett; Sharon A. Reutter; Robert J. Mioduszewski; Sandra A. Thomson; Dennis B. Miller; Jill R. Jarvis; Candice L. Krauthauser
Regulatory Toxicology and Pharmacology | 2015
Lisa M. Sweeney; Douglas R. Sommerville; Stephen R. Channel; Brian Sharits; Nathan M Gargas; Chester P. Gut