Douglas Strathdee
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas Strathdee.
Current Biology | 1998
Kenneth A. Brown; Douglas Strathdee; Sheila Bryson; Wendy Lambie; Allan Balmain
BACKGROUND . Pinpointing the cells from which tumours arise is a major challenge n tumour biology. Previous work has shown that the targeted expression of a mutant ras gene within the interfollicular cell compartment of mouse skin induces the formation of benign papillomas, but these do not spontaneously progress to malignancy. We have investigated the carcinogenic effects of expressing the same oncogene in a different population of epidermal cells. RESULTS Expression of mutant ras from a truncated keratin 5 gene promoter, which directs expression to the follicular and interfollicular cells of newborn mice and the hair follicle cells of adults, stimulated the development of acanthotic areas in newborn mice. Within one week of birth, the acanthotic skin developed areas of carcinoma in situ and adult mice developed papillomas and keratoacanthomas, the latter having a high frequency of spontaneous malignant transformation to squamous and occasionally spindle carcinomas. The benign tumours that arose had several hallmarks of tumours at a high risk of malignant progression, including suprabasal cell proliferation and heterogeneous expression of keratin 13. In contrast to tumours induced by expressing mutant ras under the control of the keratin 10 or keratin 1 gene promoters, the formation of these lesions was not dependent on wounding or a tumour promoter. CONCLUSIONS Benign tumours that are at a risk of malignant conversion are primarily derived from cells located within the hair follicle, and the nature of the cell in which tumour initiation occurs is a major determinant of malignant potential.
Cancer Cell | 2016
Colin W. Steele; Saadia A. Karim; Joshua Leach; Peter Bailey; Rosanna Upstill-Goddard; Loveena Rishi; Mona Foth; Sheila Bryson; Karen McDaid; Zena Wilson; Catherine Eberlein; Juliana Candido; Mairi Clarke; Colin Nixon; John T. Connelly; Nigel B. Jamieson; C. Ross Carter; Frances R. Balkwill; David K. Chang; T.R. Jeffry Evans; Douglas Strathdee; Andrew V. Biankin; Robert J. B. Nibbs; Simon T. Barry; Owen J. Sansom; Jennifer P. Morton
Summary CXCR2 has been suggested to have both tumor-promoting and tumor-suppressive properties. Here we show that CXCR2 signaling is upregulated in human pancreatic cancer, predominantly in neutrophil/myeloid-derived suppressor cells, but rarely in tumor cells. Genetic ablation or inhibition of CXCR2 abrogated metastasis, but only inhibition slowed tumorigenesis. Depletion of neutrophils/myeloid-derived suppressor cells also suppressed metastasis suggesting a key role for CXCR2 in establishing and maintaining the metastatic niche. Importantly, loss or inhibition of CXCR2 improved T cell entry, and combined inhibition of CXCR2 and PD1 in mice with established disease significantly extended survival. We show that CXCR2 signaling in the myeloid compartment can promote pancreatic tumorigenesis and is required for pancreatic cancer metastasis, making it an excellent therapeutic target.
Developmental Cell | 2013
Eric C. Cheung; Dimitris Athineos; Pearl Lee; Rachel A. Ridgway; Wendy Lambie; Colin Nixon; Douglas Strathdee; Karen Blyth; Owen J. Sansom; Karen H. Vousden
Summary Regulation of metabolic pathways plays an important role in controlling cell growth, proliferation, and survival. TIGAR acts as a fructose-2,6-bisphosphatase, potentially promoting the pentose phosphate pathway to produce NADPH for antioxidant function and ribose-5-phosphate for nucleotide synthesis. The functions of TIGAR were dispensable for normal growth and development in mice but played a key role in allowing intestinal regeneration in vivo and in ex vivo cultures, where growth defects due to lack of TIGAR were rescued by ROS scavengers and nucleosides. In a mouse intestinal adenoma model, TIGAR deficiency decreased tumor burden and increased survival, while elevated expression of TIGAR in human colon tumors suggested that deregulated TIGAR supports cancer progression. Our study demonstrates the importance of TIGAR in regulating metabolism for regeneration and cancer development and identifies TIGAR as a potential therapeutic target in diseases such as ulcerative colitis and intestinal cancer.
Nature Cell Biology | 2015
Simone Cardaci; Liang Zheng; Gillian M. Mackay; Niels J. F. van den Broek; Elaine D. MacKenzie; Colin Nixon; David Stevenson; Sergey Tumanov; Vinay Bulusu; Jurre J. Kamphorst; Alexei Vazquez; Stewart Fleming; Francesca Schiavi; Gabriela Kalna; Karen Blyth; Douglas Strathdee; Eyal Gottlieb
Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.
PLOS ONE | 2006
Douglas Strathdee; Helen Ibbotson; Seth G. N. Grant
Background Targeting transgenes to a chosen location in the genome has a number of advantages. A single copy of the DNA construct can be inserted by targeting into regions of chromatin that allow the desired developmental and tissue-specific expression of the transgene. Methodology In order to develop a reliable system for reproducibly expressing trangenes it was decided to insert constructs at the Gt(ROSA)26Sor locus. A cytomegalovirus (CMV) promoter was used to drive expression of the Tetracycline (tet) transcriptional activator, rtTA2s-M2, and test the effectiveness of using the ROSA26 locus to allow transgene expression. The tet operator construct was inserted into one allele of ROSA26 and a tet responder construct controlling expression of EGFP was inserted into the other allele. Conclusions Expression of the targeted transgenes was shown to be affected by both the presence of selectable marker cassettes and by the orientation of the transgenes with respect to the endogenous ROSA26 promoter. These results suggest that transcriptional interference from the endogenous gene promoter or from promoters in the selectable marker cassettes may be affecting transgene expression at the locus. Additionally we have been able to determine the optimal orientation for transgene expression at the ROSA26 locus.
Cell Reports | 2016
Zahra Erami; David Herrmann; Sean C. Warren; Max Nobis; Ewan J. McGhee; Morghan C. Lucas; Wilfred Leung; Nadine Reischmann; Agata Mrowinska; Juliane P. Schwarz; Shereen Kadir; James R.W. Conway; Claire Vennin; Saadia A. Karim; Andrew D. Campbell; David Gallego-Ortega; Astrid Magenau; Kendelle J. Murphy; Rachel A. Ridgway; Andrew M. K. Law; Stacey N. Walters; Shane T. Grey; David R. Croucher; Lei Zhang; Herbert Herzog; Edna C. Hardeman; Peter Gunning; Christopher J. Ormandy; T.R. Jeffry Evans; Douglas Strathdee
Summary E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments.
Current Biology | 2016
Cassie J. Clarke; Tracy J. Berg; Joanna Birch; Darren Ennis; Louise Mitchell; Catherine Cloix; Andrew D. Campbell; David Sumpton; Colin Nixon; Kirsteen J. Campbell; Victoria L. Bridgeman; P. Vermeulen; Shane Foo; Eleftherios Kostaras; J. Louise Jones; Linda Haywood; Ellie Pulleine; Huabing Yin; Douglas Strathdee; Owen J. Sansom; Karen Blyth; Iain A. McNeish; Sara Zanivan; Andrew R. Reynolds; Jim C. Norman
Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.
Cancer Research | 2016
Josephine Walton; Julianna Blagih; Darren Ennis; Elaine Leung; Suzanne Dowson; Malcolm Farquharson; Laura A. Tookman; Clare Orange; Dimitris Athineos; Susan M. Mason; David K. Stevenson; Karen Blyth; Douglas Strathdee; Frances R. Balkwill; Karen H. Vousden; Michelle Lockley; Iain A. McNeish
There is a need for transplantable murine models of ovarian high-grade serous carcinoma (HGSC) with regard to mutations in the human disease to assist investigations of the relationships between tumor genotype, chemotherapy response, and immune microenvironment. In addressing this need, we performed whole-exome sequencing of ID8, the most widely used transplantable model of ovarian cancer, covering 194,000 exomes at a mean depth of 400× with 90% exons sequenced >50×. We found no functional mutations in genes characteristic of HGSC (Trp53, Brca1, Brca2, Nf1, and Rb1), and p53 remained transcriptionally active. Homologous recombination in ID8 remained intact in functional assays. Further, we found no mutations typical of clear cell carcinoma (Arid1a, Pik3ca), low-grade serous carcinoma (Braf), endometrioid (Ctnnb1), or mucinous (Kras) carcinomas. Using CRISPR/Cas9 gene editing, we modeled HGSC by generating novel ID8 derivatives that harbored single (Trp53-/-) or double (Trp53-/-;Brca2-/-) suppressor gene deletions. In these mutants, loss of p53 alone was sufficient to increase the growth rate of orthotopic tumors with significant effects observed on the immune microenvironment. Specifically, p53 loss increased expression of the myeloid attractant CCL2 and promoted the infiltration of immunosuppressive myeloid cell populations into primary tumors and their ascites. In Trp53-/-;Brca2-/- mutant cells, we documented a relative increase in sensitivity to the PARP inhibitor rucaparib and slower orthotopic tumor growth compared with Trp53-/- cells, with an appearance of intratumoral tertiary lymphoid structures rich in CD3+ T cells. This work validates new CRISPR-generated models of HGSC to investigate its biology and promote mechanism-based therapeutics discovery. Cancer Res; 76(20); 6118-29. ©2016 AACR.
European Journal of Cell Biology | 2012
Hannah Schachtner; Ang Li; David Stevenson; Simon D. J. Calaminus; Steven G. Thomas; Steve P. Watson; Michael Sixt; Roland Wedlich-Söldner; Douglas Strathdee; Laura M. Machesky
We describe here the development and characterization of a conditionally inducible mouse model expressing Lifeact-GFP, a peptide that reports the dynamics of filamentous actin. We have used this model to study platelets, megakaryocytes and melanoblasts and we provide evidence that Lifeact-GFP is a useful reporter in these cell types ex vivo. In the case of platelets and megakaryocytes, these cells are not transfectable by traditional methods, so conditional activation of Lifeact allows the study of actin dynamics in these cells live. We studied melanoblasts in native skin explants from embryos, allowing the visualization of live actin dynamics during cytokinesis and migration. Our study revealed that melanoblasts lacking the small GTPase Rac1 show a delay in the formation of new pseudopodia following cytokinesis that accounts for the previously reported cytokinesis delay in these cells. Thus, through use of this mouse model, we were able to gain insights into the actin dynamics of cells that could only previously be studied using fixed specimens or following isolation from their native tissue environment.
Journal of Biological Chemistry | 2008
Douglas Strathdee; C. Bruce A. Whitelaw; A. John Clark
About half of all genes have a CpG island surrounding the promoter and transcription start site. Most promoter CpG islands are normally unmethylated in all tissues, irrespective of the expression level of the associated gene. Establishment of the appropriate patterns of DNA methylation in the genome is essential for normal development and patterns of gene expression. Aberrant methylation of CpG islands and silencing of the associated genes is frequently observed in cancer. One gene with a 5′-CpG island is cytoplasmic β-actin, which is an abundantly expressed protein and a major component of microfilaments. Inserting a βgeo cassette into the 3′-untranslated region of β-actin gene led to widespread but not ubiquitous lacZ expression in mice heterozygous for the modified β-actin allele. Surprisingly, embryos homozygous for this insertion died at mid-gestation. The modified β-actin allele was expressed in undifferentiated embryonic stem cells but was turned off as these cells differentiate in vitro and in vivo. We demonstrate that the insertion affects the maintenance of the methylation status of the CpG island of the modified β-actin allele in differentiated but not in undifferentiated embryonic cells. These data suggest that there is a two-step process to defining a CpG island, requiring both embryonic establishment and a signal that maintains the CpG island in differentiated cells. Furthermore, they indicate that features built into the CpG island are not sufficient to direct CpG island maintenance during differentiation.