Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas T. Hess is active.

Publication


Featured researches published by Douglas T. Hess.


Nature Reviews Molecular Cell Biology | 2005

Protein S-nitrosylation: purview and parameters.

Douglas T. Hess; Akio Matsumoto; Sung Oog Kim; Harvey E. Marshall; Jonathan S. Stamler

S-nitrosylation, the covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine, has emerged as an important mechanism for dynamic, post-translational regulation of most or all main classes of protein. S-nitrosylation thereby conveys a large part of the ubiquitous influence of nitric oxide (NO) on cellular signal transduction, and provides a mechanism for redox-based physiological regulation.


Nature | 2001

Export by red blood cells of nitric oxide bioactivity.

John R. Pawloski; Douglas T. Hess; Jonathan S. Stamler

Previous studies support a model in which the physiological O2 gradient is transduced by haemoglobin into the coordinate release from red blood cells of O2 and nitric oxide (NO)-derived vasoactivity to optimize oxygen delivery in the arterial periphery. But whereas both O2 and NO diffuse into red blood cells, only O2 can diffuse out. Thus, for the dilation of blood vessels by red blood cells, there must be a mechanism to export NO-related vasoactivity, and current models of NO-mediated intercellular communication should be revised. Here we show that in human erythrocytes haemoglobin-derived S-nitrosothiol (SNO), generated from imported NO, is associated predominantly with the red blood cell membrane, and principally with cysteine residues in the haemoglobin-binding cytoplasmic domain of the anion exchanger AE1. Interaction with AE1 promotes the deoxygenated structure in SNO–haemoglobin, which subserves NO group transfer to the membrane. Furthermore, we show that vasodilatory activity is released from this membrane precinct by deoxygenation. Thus, the oxygen-regulated cellular mechanism that couples the synthesis and export of haemoglobin-derived NO bioactivity operates, at least in part, through formation of AE1–SNO at the membrane–cytosol interface.


Science | 2008

Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins.

Moran Benhar; Michael T. Forrester; Douglas T. Hess; Jonathan S. Stamler

Nitric oxide acts substantially in cellular signal transduction through stimulus-coupled S-nitrosylation of cysteine residues. The mechanisms that might subserve protein denitrosylation in cellular signaling remain uncharacterized. Our search for denitrosylase activities focused on caspase-3, an exemplar of stimulus-dependent denitrosylation, and identified thioredoxin and thioredoxin reductase in a biochemical screen. In resting human lymphocytes, thioredoxin-1 actively denitrosylated cytosolic caspase-3 and thereby maintained a low steady-state amount of S-nitrosylation. Upon stimulation of Fas, thioredoxin-2 mediated denitrosylation of mitochondria-associated caspase-3, a process required for caspase-3 activation, and promoted apoptosis. Inhibition of thioredoxin-thioredoxin reductases enabled identification of additional substrates subject to endogenous S-nitrosylation. Thus, specific enzymatic mechanisms may regulate basal and stimulus-induced denitrosylation in mammalian cells.


Circulation Research | 2010

S-Nitrosylation in Cardiovascular Signaling

Brian Lima; Michael T. Forrester; Douglas T. Hess; Jonathan S. Stamler

Well over 2 decades have passed since the endothelium-derived relaxation factor was reported to be the gaseous molecule nitric oxide (NO). Although soluble guanylyl cyclase (which generates cyclic guanosine monophosphate, cGMP) was the first identified receptor for NO, it has become increasingly clear that NO exerts a ubiquitous influence in a cGMP-independent manner. In particular, many, if not most, effects of NO are mediated by S-nitrosylation, the covalent modification of a protein cysteine thiol by an NO group to generate an S-nitrosothiol (SNO). Moreover, within the current framework of NO biology, endothelium-derived relaxation factor activity (ie, G protein-coupled receptor-mediated, or shear-induced endothelium-derived NO bioactivity) is understood to involve a central role for SNOs, acting both as second messengers and signal effectors. Furthermore, essential roles for S-nitrosylation have been implicated in virtually all major functions of NO in the cardiovascular system. Here, we review the basic biochemistry of S-nitrosylation (and denitrosylation), discuss the role of S-nitrosylation in the vascular and cardiac functions of NO, and identify current and potential clinical applications.


Journal of Biological Chemistry | 2002

Basal and Stimulated Protein S-Nitrosylation in Multiple Cell Types and Tissues

Andrew J. Gow; Qiping Chen; Douglas T. Hess; Brian J. Day; Harry Ischiropoulos; Jonathan S. Stamler

There is substantial evidence that proteinS-nitrosylation provides a significant route through which nitric oxide (NO)-derived bioactivity is conveyed. However, most examples of S-nitrosylation have been characterized on the basis of analysis in vitro, and relatively little progress has been made in assessing the participant forms of nitric-oxide synthase (NOS) or the dynamics of protein S-nitrosylationin situ. Here we utilize antibodies specific for the nitrosothiol (SNO) moiety to provide an immunohistochemical demonstration that protein S-nitrosylation is coupled to the activity of each of the major forms of NOS. In cultured endothelial cells, SNO-protein immunoreactivity increases in response to Ca2+-stimulated endothelial NOS (eNOS) activity, and in aortic rings, endothelium-derived and eNOS-mediated relaxation (EDRF) is coupled to increased protein S-nitrosylation in both endothelial and associated smooth muscle cells. In cultured macrophages, SNO-protein levels increase upon cytokine induction of induced NOS (iNOS), and in PC12 cells, increased proteinS-nitrosylation is linked to nerve growth factor induction of neuronal NOS (nNOS). In addition, we describe developmental and pathophysiological increases in SNO-protein immunoreactivity within human lung. These results, which demonstrate Ca2+, neurohumoral, growth factor, cytokine, and developmental regulation of protein S-nitrosylation that is coupled to NOS expression and activity, provide unique evidence for the proposition that this ubiquitous NO-derived post-translational protein modification serves as a major effector of NO-related bioactivity.


Nature Cell Biology | 2001

S-nitrosylation: spectrum and specificity.

Douglas T. Hess; Akio Matsumoto; Raphael Nudelman; Jonathan S. Stamler

Nitric oxide regulates a broad functional spectrum of proteins by S-nitrosylation. Specificity is conferred by acid–base and hydrophobic motifs that target critical cysteine residues and by protein–protein interactions that confine the signals in space.


Journal of Biological Chemistry | 2012

Regulation by S-Nitrosylation of Protein Post-translational Modification

Douglas T. Hess; Jonathan S. Stamler

Protein post-translational modification by S-nitrosylation conveys a ubiquitous influence of nitric oxide on signal transduction in eukaryotic cells. The wide functional purview of S-nitrosylation reflects in part the regulation by S-nitrosylation of the principal protein post-translational modifications that play a role in cell signaling, including phosphorylation, acetylation, ubiquitylation and related modifications, palmitoylation, and alternative Cys-based redox modifications. In this minireview, we discuss the mechanisms through which S-nitrosylation exerts its broad pleiotropic influence on protein post-translational modification.


Journal of Lipid Research | 2011

Site-specific analysis of protein S-acylation by resin-assisted capture

Michael T. Forrester; Douglas T. Hess; J. Will Thompson; Rainbo Hultman; M. Arthur Moseley; Jonathan S. Stamler; Patrick J. Casey

Protein S-acylation is a major posttranslational modification whereby a cysteine thiol is converted to a thioester. A prototype is S-palmitoylation (fatty acylation), in which a protein undergoes acylation with a hydrophobic 16 carbon lipid chain. Although this modification is a well-recognized determinant of protein function and localization, current techniques to study cellular S-acylation are cumbersome and/or technically demanding. We recently described a simple and robust methodology to rapidly identify S-nitrosylation sites in proteins via resin-assisted capture (RAC) and provided an initial description of the applicability of the technique to S-acylated proteins (acyl-RAC). Here we expand on the acyl-RAC assay, coupled with mass spectrometry-based proteomics, to characterize both previously reported and novel sites of endogenous S-acylation. Acyl-RAC should therefore find general applicability in studies of both global and individual protein S-acylation in mammalian cells.


Molecular Cell | 2008

S-Nitrosylation of β-Arrestin Regulates β-Adrenergic Receptor Trafficking

Kentaro Ozawa; Erin J. Whalen; Christopher D. Nelson; Yuanyu Mu; Douglas T. Hess; Robert J. Lefkowitz; Jonathan S. Stamler

Signal transduction through G protein-coupled receptors (GPCRs) is regulated by receptor desensitization and internalization that follow agonist stimulation. Nitric oxide (NO) can influence these processes, but the cellular source of NO bioactivity and the effects of NO on GPCR-mediated signal transduction are incompletely understood. Here, we show in cells and mice that beta-arrestin 2, a central element in GPCR trafficking, interacts with and is S-nitrosylated at a single cysteine by endothelial NO synthase (eNOS), and that S-nitrosylation of beta-arrestin 2 is promoted by endogenous S-nitrosogluthathione. S-nitrosylation after agonist stimulation of the beta-adrenergic receptor, a prototypical GPCR, dissociates eNOS from beta-arrestin 2 and promotes binding of beta-arrestin 2 to clathrin heavy chain/beta-adaptin, thereby accelerating receptor internalization. The agonist- and NO-dependent shift in the affiliations of beta-arrestin 2 is followed by denitrosylation. Thus, beta-arrestin subserves the functional coupling of eNOS and GPCRs, and dynamic S-nitrosylation/denitrosylation of beta-arrestin 2 regulates stimulus-induced GPCR trafficking.


Circulation Research | 2008

Hypoxic Vasodilation by Red Blood Cells. Evidence for an S-Nitrosothiol–Based Signal

Diana L. Diesen; Douglas T. Hess; Jonathan S. Stamler

Red blood cells (RBCs) have been ascribed an essential role in matching blood flow to local metabolic demand during hypoxic vasodilation. The vasodilatory function of RBCs evidently relies on the allosteric properties of hemoglobin (Hb), which couple the conformation of Hb to tissue oxygen tension (Po2) and thereby provide a basis for the graded vasodilatory activity that is inversely proportional to Hb oxygen saturation. Although a large body of evidence indicates that the Po2-coupled allosteric transition from R (oxy)-state to T (deoxy)-state subserves the release from Hb of vasodilatory nitric oxide (NO) bioactivity, it has not yet been determined whether the NO-based signal is a necessary and sufficient source of RBC-mediated vasoactivity and it has been suggested that ATP or nitrite may also contribute. We demonstrate here by bioassay that untreated human RBCs rapidly and substantially relax thoracic aorta from both rabbit and mouse at low Po2 (≈1% O2) but not at high Po2 (≈21% O2). RBC-mediated vasorelaxation is inhibited by prior depletion of S-nitroso-Hb, potentiated by low-molecular-weight thiols, and dependent on cGMP. Furthermore, these relaxations are largely endothelium-independent and unaffected by NO synthase inhibition or nitrite. Robust relaxations by RBCs are also elicited in the absence of endothelial, neuronal or inducible NO synthase. Finally, contractions that appear following resolution of RBC-mediated relaxations are dependent on NO derived from RBCs as well as the endothelium. Our results suggest that an S-nitrosothiol–based signal originating from RBCs mediates hypoxic vasodilation by RBCs, and that vasorelaxation by RBCs dominates NO-based vasoconstriction under hypoxic conditions.

Collaboration


Dive into the Douglas T. Hess's collaboration.

Top Co-Authors

Avatar

Jonathan S. Stamler

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi An Sun

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faisal Matto

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rongli Zhang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Cina

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge