Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas W. Allan is active.

Publication


Featured researches published by Douglas W. Allan.


Neuron | 2005

Regulators Acting in Combinatorial Codes Also Act Independently in Single Differentiating Neurons

Douglas W. Allan; Dongkook Park; Susan E. St. Pierre; Paul H. Taghert; Stefan Thor

In the Drosophila ventral nerve cord, a small number of neurons express the LIM-homeodomain gene apterous (ap). These ap neurons can be subdivided based upon axon pathfinding and their expression of neuropeptidergic markers. ap, the zinc finger gene squeeze, the bHLH gene dimmed, and the BMP pathway are all required for proper specification of these cells. Here, using several ap neuron terminal differentiation markers, we have resolved how each of these factors contributes to ap neuron diversity. We find that these factors interact genetically and biochemically in subtype-specific combinatorial codes to determine certain defining aspects of ap neuron subtype identity. However, we also find that ap, dimmed, and squeeze additionally act independently of one another to specify certain other defining aspects of ap neuron subtype identity. Therefore, within single neurons, we show that single regulators acting in numerous molecular contexts differentially specify multiple subtype-specific traits.


Development | 2004

Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification.

Irene Miguel-Aliaga; Douglas W. Allan; Stefan Thor

In the Drosophila nerve cord, a subset of neurons expresses the neuropeptide FMRFamide related (Fmrf). Fmrf expression is controlled by a combinatorial code of intrinsic factors and an extrinsic BMP signal. However, this previously identified code does not fully explain the regulation of Fmrf. We have found that the Dachshund (Dac) and Eyes Absent (Eya) transcription co-factors participate in this combinatorial code. Previous studies have revealed an intimate link between Dac and Eya during eye development. Here, by analyzing their function in neurons with multiple phenotypic markers, we demonstrate that they play independent roles in neuronal specification, even within single cells. dac is required for high-level Fmrf expression, and acts potently together with apterous and BMP signaling to trigger Fmrf expression ectopically, even in motoneurons. By contrast, eya regulates Fmrf expression by controlling both axon pathfinding and BMP signaling, but cannot trigger Fmrf ectopically. Thus, we show that dac and eya perform entirely different functions in a single cell type to ultimately regulate a single phenotypic outcome.


The Journal of Neuroscience | 2009

Neuronal Phenotype in the Mature Nervous System Is Maintained by Persistent Retrograde Bone Morphogenetic Protein Signaling

Kevin T. Eade; Douglas W. Allan

The terminal differentiation of many developing neurons occurs after they innervate their target cells and is triggered by secreted target-derived signals that are transduced by presynaptic cognate receptors. Such retrograde signaling induces the expression of genes that are often distinctive markers of neuronal phenotype and function. However, whether long-term maintenance of neuronal phenotype requires persistent retrograde signaling remains poorly understood. Previously, we demonstrated that retrograde bone morphogenetic protein (BMP) signaling induces expression of a phenotypic marker of Drosophila Tv neurons, the neuropeptide FMRFamide (FMRFa). Here, we used a genetic technique that spatiotemporally targets transgene expression in Drosophila to test the role of persistent BMP signaling in the maintenance of Tv phenotype. We show that expression of dominant blockers of BMP signaling selectively in adult Tv neurons dramatically downregulated FMRFa expression. Moreover, adult-onset expression of mutant Glued, which blocks dynein/dynactin-mediated retrograde axonal transport, eliminated retrograde BMP signaling and dramatically downregulated FMRFa expression. Finally, we found that BMP deprivation did not affect Tv neuron survival and that FMRFa expression fully recovered to control levels after the termination of BMP blockade or Glued expression. Our results show that persistent retrograde BMP signaling is required to induce and to subsequently maintain the expression of a stably expressed phenotypic marker in a subset of mature Drosophila neurons. We postulate that retrograde maintenance of neuronal phenotype is conserved in vertebrates, and as a consequence, neuronal phenotype is likely vulnerable to neurodegenerative disease pathologies that disrupt neuronal connectivity or axonal transport.


Wiley Interdisciplinary Reviews-Developmental Biology | 2015

Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification

Douglas W. Allan; Stefan Thor

The broad range of tissue and cellular diversity of animals is generated to a large extent by the hierarchical deployment of sequence‐specific transcription factors and co‐factors (collectively referred to as TFs herein) during development. Our understanding of these developmental processes has been facilitated by the recognition that the activities of many TFs can be meaningfully described by a few functional categories that usefully convey a sense for how the TFs function, and also provides a sense for the regulatory organization of the developmental processes in which they participate. Here, we draw on examples from studies in Caenorhabditis elegans, Drosophila melanogaster, and vertebrates to discuss how the terms spatial selector, temporal selector, tissue/cell type selector, terminal selector and combinatorial code may be usefully applied to categorize the activities of TFs at critical steps of nervous system construction. While we believe that these functional categories are useful for understanding the organizational principles by which TFs direct nervous system construction, we however caution against the assumption that a TFs function can be solely or fully defined by any single functional category. Indeed, most TFs play diverse roles within different functional categories, and their roles can blur the lines we draw between these categories. Regardless, it is our belief that the concepts discussed here are helpful in clarifying the regulatory complexities of nervous system development, and hope they prove useful when interpreting mutant phenotypes, designing future experiments, and programming specific neuronal cell types for use in therapies. WIREs Dev Biol 2015, 4:505–528. doi: 10.1002/wdev.191


PLOS Genetics | 2012

Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System

Kevin T. Eade; Hailey A. Fancher; Marc S. Ridyard; Douglas W. Allan

During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Temporally tuned neuronal differentiation supports the functional remodeling of a neuronal network in Drosophila

Lyubov Veverytsa; Douglas W. Allan

During insect metamorphosis, neuronal networks undergo extensive remodeling by restructuring their connectivity and recruiting newborn neurons from postembryonic lineages. The neuronal network that directs the essential behavior, ecdysis, generates a distinct behavioral sequence at each developmental transition. Larval ecdysis replaces the cuticle between larval stages, and pupal ecdysis externalizes and expands the head and appendages to their adult position. However, the network changes that support these differences are unknown. Crustacean cardioactive peptide (CCAP) neurons and the peptide hormones they secrete are critical for ecdysis; their targeted ablation alters larval ecdysis progression and results in a failure of pupal ecdysis. In this study, we demonstrate that the CCAP neuron network is remodeled immediately before pupal ecdysis by the emergence of 12 late CCAP neurons. All 12 are CCAP efferents that exit the central nervous system. Importantly, these late CCAP neurons were found to be entirely sufficient for wild-type pupal ecdysis, even after targeted ablation of all other 42 CCAP neurons. Our evidence indicates that late CCAP neurons are derived from early, likely embryonic, lineages. However, they do not differentiate to express their peptide hormone battery, nor do they project an axon via lateral nerve trunks until pupariation, both of which are believed to be critical for the function of CCAP efferent neurons in ecdysis. Further analysis implicated ecdysone signaling via ecdysone receptors A/B1 and the nuclear receptor ftz-f1 as the differentiation trigger. These results demonstrate the utility of temporally tuned neuronal differentiation as a hard-wired developmental mechanism to remodel a neuronal network to generate a scheduled change in behavior.


Developmental Cell | 2014

Homeotic Function of Drosophila Bithorax-Complex miRNAs Mediates Fertility by Restricting Multiple Hox Genes and TALE Cofactors in the CNS

Daniel L. Garaulet; Monica C. Castellanos; Fernando Bejarano; Piero Sanfilippo; David M. Tyler; Douglas W. Allan; Ernesto Sánchez-Herrero; Eric C. Lai

The Drosophila Bithorax complex (BX-C) Hox cluster contains a bidirectionally transcribed miRNA locus, and a deletion mutant (Δmir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the CNS. Δmir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, because sterility of Δmir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in Δmir females, and substantially rescued by heterozygosity of Δmir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation; and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior.


Development | 2013

Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility

Monica C. Castellanos; Jonathan C. Y. Tang; Douglas W. Allan

In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila.


Development | 2011

Retrograde BMP signaling controls Drosophila behavior through regulation of a peptide hormone battery

Lyubov Veverytsa; Douglas W. Allan

Retrograde BMP signaling in neurons plays conserved roles in synaptic efficacy and subtype-specific gene expression. However, a role for retrograde BMP signaling in the behavioral output of neuronal networks has not been established. Insect development proceeds through a series of stages punctuated by ecdysis, a complex patterned behavior coordinated by a dedicated neuronal network. In Drosophila, larval ecdysis sheds the old cuticle between larval stages, and pupal ecdysis everts the head and appendages to their adult external position during metamorphosis. Here, we found that mutants of the type II BMP receptor wit exhibited a defect in the timing of larval ecdysis and in the completion of pupal ecdysis. These phenotypes largely recapitulate those previously observed upon ablation of CCAP neurons, an integral subset of the ecdysis neuronal network. Here, we establish that retrograde BMP signaling in only the efferent subset of CCAP neurons (CCAP-ENs) is required to cell-autonomously upregulate expression of the peptide hormones CCAP, Mip and Bursicon β. In wit mutants, restoration of wit exclusively in CCAP neurons significantly rescued peptide hormone expression and ecdysis phenotypes. Moreover, combinatorial restoration of peptide hormone expression in CCAP neurons in wit mutants also significantly rescued wit ecdysis phenotypes. Collectively, our data demonstrate a novel role for retrograde BMP signaling in maintaining the behavioral output of a neuronal network and uncover the underlying cellular and gene regulatory substrates.


Scientific Reports | 2015

Rescue from tau-induced neuronal dysfunction produces insoluble tau oligomers

Catherine M. Cowan; Shmma Quraishe; Sarah Hands; Megan Sealey; Sumeet Mahajan; Douglas W. Allan; Amritpal Mudher

Aggregation of highly phosphorylated tau is a hallmark of Alzheimer’s disease and other tauopathies. Nevertheless, animal models demonstrate that tau-mediated dysfunction/toxicity may not require large tau aggregates but instead may be caused by soluble hyper-phosphorylated tau or by small tau oligomers. Challenging this widely held view, we use multiple techniques to show that insoluble tau oligomers form in conditions where tau-mediated dysfunction is rescued in vivo. This shows that tau oligomers are not necessarily always toxic. Furthermore, their formation correlates with increased tau levels, caused intriguingly, by either pharmacological or genetic inhibition of tau kinase glycogen-synthase-kinase-3beta (GSK-3β). Moreover, contrary to common belief, these tau oligomers were neither highly phosphorylated, and nor did they contain beta-pleated sheet structure. This may explain their lack of toxicity. Our study makes the novel observation that tau also forms non-toxic insoluble oligomers in vivo in addition to toxic oligomers, which have been reported by others. Whether these are inert or actively protective remains to be established. Nevertheless, this has wide implications for emerging therapeutic strategies such as those that target dissolution of tau oligomers as they may be ineffective or even counterproductive unless they act on the relevant toxic oligomeric tau species.

Collaboration


Dive into the Douglas W. Allan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Keatings

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Craig H. Kerr

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Eric Jan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Monica C. Castellanos

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amritpal Mudher

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan Sealey

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge