Douglas W. DeSimone
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas W. DeSimone.
Developmental Biology | 2010
Tania Rozario; Douglas W. DeSimone
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Current Opinion in Cell Biology | 2008
Martin A. Schwartz; Douglas W. DeSimone
Integrins and cadherins are tri-functional: they bind ligands on other cells or in the extracellular matrix, connect to the cytoskeleton inside the cell, and regulate intracellular signaling pathways. These adhesion receptors therefore transmit mechanical stresses and are well positioned to mediate mechanotransduction. Studies of cultured cells have shown that both integrin- and cadherin-mediated adhesion are intrinsically mechanosensitive. Strengthening of adhesions in response to mechanical stimulation may be a central mechanism for mechanotransduction. Studies of developing organisms suggest that these mechanisms contribute to tissue level responses to tension and compression, thereby linking morphogenetic movements to cell fate decisions.
Developmental Cell | 2012
Gregory F. Weber; Maureen A. Bjerke; Douglas W. DeSimone
Collective cell migration requires maintenance of adhesive contacts between adjacent cells, coordination of polarized cell protrusions, and generation of propulsive traction forces. We demonstrate that mechanical force applied locally to C-cadherins on single Xenopus mesendoderm cells is sufficient to induce polarized cell protrusion and persistent migration typical of individual cells within a collectively migrating tissue. Local tension on cadherin adhesions induces reorganization of the keratin intermediate filament network toward these stressed sites. Plakoglobin, a member of the catenin family, is localized to cadherin adhesions under tension and is required for both mechanoresponsive cell behavior and assembly of the keratin cytoskeleton at the rear of these cells. Local tugging forces on cadherins occur in vivo through interactions with neighboring cells, and these forces result in coordinate changes in cell protrusive behavior. Thus, cadherin-dependent force-inducible regulation of cell polarity in single mesendoderm cells represents an emergent property of the intact tissue.
Cold Spring Harbor Perspectives in Biology | 2011
Jean E. Schwarzbauer; Douglas W. DeSimone
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN-FN and cell-FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.
Journal of Cell Science | 2011
Gregory F. Weber; Maureen A. Bjerke; Douglas W. DeSimone
Cell–cell and cell–extracellular-matrix (cell–ECM) adhesions have much in common, including shared cytoskeletal linkages, signaling molecules and adaptor proteins that serve to regulate multiple cellular functions. The term ‘adhesive crosstalk’ is widely used to indicate the presumed functional communication between distinct adhesive specializations in the cell. However, this distinction is largely a simplification on the basis of the non-overlapping subcellular distribution of molecules that are involved in adhesion and adhesion-dependent signaling at points of cell–cell and cell–substrate contact. The purpose of this Commentary is to highlight data that demonstrate the coordination and interdependence of cadherin and integrin adhesions. We describe the convergence of adhesive inputs on cell signaling pathways and cytoskeletal assemblies involved in regulating cell polarity, migration, proliferation and survival, differentiation and morphogenesis. Cell–cell and cell–ECM adhesions represent highly integrated networks of protein interactions that are crucial for tissue homeostasis and the responses of individual cells to their adhesive environments. We argue that the machinery of adhesion in multicellular tissues comprises an interdependent network of cell–cell and cell–ECM interactions and signaling responses, and not merely crosstalk between spatially and functionally distinct adhesive specializations within cells.
Current Biology | 2003
Mungo Marsden; Douglas W. DeSimone
BACKGROUND Convergence extension movements are conserved tissue rearrangements implicated in multiple morphogenetic events. While many of the cell behaviors involved in convergent extension are known, the molecular interactions required for this process remain elusive. However, past evidence suggests that regulation of cell adhesion molecule function is a key step in the progression of these behaviors. RESULTS Antibody blocking of fibronectin (FN) adhesion or dominant-negative inhibition of integrin beta 1 function alters cadherin-mediated cell adhesion, promotes cell-sorting behaviors in reaggregation assays, and inhibits medial-lateral cell intercalation and axial extension in gastrulating embryos and explants. Embryo explants were used to demonstrate that normal integrin signaling is required for morphogenetic movements within defined regions but not for cell fate specification. The binding of soluble RGD-containing fragments of fibronectin to integrins promotes the reintegration of dissociated single cells into intact tissues. The changes in adhesion observed are independent of cadherin or integrin expression levels. CONCLUSIONS We conclude that integrin modulation of cadherin adhesion influences cell intercalation behaviors within boundaries defined by extracellular matrix. We propose that this represents a fundamental mechanism promoting localized cell rearrangements throughout development.
Current Biology | 2006
Lance A. Davidson; Mungo Marsden; Ray Keller; Douglas W. DeSimone
Summary Background Integrin recognition of fibronectin is required for normal gastrulation including the mediolateral cell intercalation behaviors that drive convergent extension and the elongation of the frog dorsal axis; however, the cellular and molecular mechanisms involved are unclear. Results We report that depletion of fibronectin with antisense morpholinos blocks both convergent extension and mediolateral protrusive behaviors in explant preparations. Both chronic depletion of fibronectin and acute disruptions of integrin α 5 β 1 binding to fibronectin increases the frequency and randomizes the orientation of polarized cellular protrusions, suggesting that integrin-fibronectin interactions normally repress frequent random protrusions in favor of fewer mediolaterally oriented ones. In the absence of integrin α 5 β 1 binding to fibronectin, convergence movements still occur but result in convergent thickening instead of convergent extension. Conclusions These findings support a role for integrin signaling in regulating the protrusive activity that drives axial extension. We hypothesize that the planar spatial arrangement of the fibrillar fibronectin matrix, which delineates tissue compartments within the embryo, is critical for promoting productive oriented protrusions in intercalating cells.
Current Biology | 2001
Dominique Alfandari; Hélène Cousin; Alban Gaultier; Katherine Smith; Judith M. White; Thierry Darribère; Douglas W. DeSimone
BACKGROUND Cranial neural-crest (CNC) cells originate from the lateral edge of the anterior neuroepithelium and migrate to form parts of the peripheral nervous system, muscles, cartilage, and bones of the face. Neural crest-cell migration involves the loss of adhesion from the surrounding neuroepithelium and a corresponding increase in cell adhesion to the extracellular matrix (ECM) present in migratory pathways. While proteolytic activity is likely to contribute to the regulation of neural crest-cell adhesion and migration, the role of a neural crest-specific protease in these processes has yet to be demonstrated. We previously showed that CNC cells express ADAM 13, a cell surface metalloprotease/disintegrin. Proteins of this family are known to act in cell-cell adhesion and as sheddases. ADAMs have also been proposed to degrade the ECM, but this has not yet been shown in a physiological context. RESULTS Using a tissue transplantation technique, we show that Xenopus CNC cells overexpressing wild-type ADAM 13 migrate along the same hyoid, branchial, and mandibular pathways used by normal CNC cells. In contrast, CNC cell grafts that express protease-defective ADAM 13 fail to migrate along the hyoid and branchial pathways. In addition, ectopic expression of wild-type ADAM 13 results in a gain-of-function phenotype in embryos, namely the abnormal positioning of trunk neural-crest cells. We further show that explanted embryonic tissues expressing wild-type, but not protease-defective, ADAM 13 display decreased cell-matrix adhesion. Purified ADAM 13 can cleave fibronectin, and tissue culture cells that express wild-type, but not protease-defective, ADAM 13 can remodel a fibronectin substrate. CONCLUSIONS Our findings support the hypothesis that the protease activity of ADAM 13 plays a critical role in neural crest-cell migration along defined pathways. We propose that the ADAM 13-dependent modification of ECM and/or other guidance molecules is a key step in the directed migration of the CNC.
Developmental Cell | 2009
Bette J. Dzamba; Karoly R. Jakab; Mungo Marsden; Martin A. Schwartz; Douglas W. DeSimone
In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Nidhi Batra; Sirisha Burra; Arlene J. Siller-Jackson; Sumin Gu; Xuechun Xia; Gregory F. Weber; Douglas W. DeSimone; Lynda F. Bonewald; Eileen M. Lafer; Eugene A. Sprague; Martin A. Schwartz; Jean X. Jiang
The connexin 43 (Cx43) hemichannel (HC) in the mechanosensory osteocytes is a major portal for the release of factors responsible for the anabolic effects of mechanical loading on bone formation and remodeling. However, little is known about how the Cx43 molecule responds to mechanical stimulation leading to the opening of the HC. Here, we demonstrate that integrin α5β1 interacts directly with Cx43 and that this interaction is required for mechanical stimulation-induced opening of the Cx43 HC. Direct mechanical perturbation via magnetic beads or conformational activation of integrin α5β1 leads to the opening of the Cx43 HC, and this role of the integrin is independent of its association with an extracellular fibronectin substrate. PI3K signaling is responsible for the shear stress-induced conformational activation of integrin α5β1 leading to the opening of the HC. These results identify an unconventional function of integrin that acts as a mechanical tether to induce opening of the HC and provide a mechanism connecting the effect of mechanical forces directly to anabolic function of the bone.