Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas W. Henderson is active.

Publication


Featured researches published by Douglas W. Henderson.


Journal of Thoracic Oncology | 2011

International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma.

William D. Travis; Elisabeth Brambilla; Masayuki Noguchi; Andrew G. Nicholson; Kim R. Geisinger; Yasushi Yatabe; David G. Beer; Charles A. Powell; Gregory J. Riely; Paul Van Schil; Kavita Garg; John H. M. Austin; Hisao Asamura; Valerie W. Rusch; Fred R. Hirsch; Giorgio V. Scagliotti; Tetsuya Mitsudomi; Rudolf M. Huber; Yuichi Ishikawa; James R. Jett; Montserrat Sanchez-Cespedes; Jean-Paul Sculier; Takashi Takahashi; Masahiro Tsuboi; Johan Vansteenkiste; Ignacio I. Wistuba; Pan-Chyr Yang; Denise R. Aberle; Christian Brambilla; Douglas B. Flieder

Introduction: Adenocarcinoma is the most common histologic type of lung cancer. To address advances in oncology, molecular biology, pathology, radiology, and surgery of lung adenocarcinoma, an international multidisciplinary classification was sponsored by the International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society. This new adenocarcinoma classification is needed to provide uniform terminology and diagnostic criteria, especially for bronchioloalveolar carcinoma (BAC), the overall approach to small nonresection cancer specimens, and for multidisciplinary strategic management of tissue for molecular and immunohistochemical studies. Methods: An international core panel of experts representing all three societies was formed with oncologists/pulmonologists, pathologists, radiologists, molecular biologists, and thoracic surgeons. A systematic review was performed under the guidance of the American Thoracic Society Documents Development and Implementation Committee. The search strategy identified 11,368 citations of which 312 articles met specified eligibility criteria and were retrieved for full text review. A series of meetings were held to discuss the development of the new classification, to develop the recommendations, and to write the current document. Recommendations for key questions were graded by strength and quality of the evidence according to the Grades of Recommendation, Assessment, Development, and Evaluation approach. Results: The classification addresses both resection specimens, and small biopsies and cytology. The terms BAC and mixed subtype adenocarcinoma are no longer used. For resection specimens, new concepts are introduced such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) for small solitary adenocarcinomas with either pure lepidic growth (AIS) or predominant lepidic growth with ≤5 mm invasion (MIA) to define patients who, if they undergo complete resection, will have 100% or near 100% disease-specific survival, respectively. AIS and MIA are usually nonmucinous but rarely may be mucinous. Invasive adenocarcinomas are classified by predominant pattern after using comprehensive histologic subtyping with lepidic (formerly most mixed subtype tumors with nonmucinous BAC), acinar, papillary, and solid patterns; micropapillary is added as a new histologic subtype. Variants include invasive mucinous adenocarcinoma (formerly mucinous BAC), colloid, fetal, and enteric adenocarcinoma. This classification provides guidance for small biopsies and cytology specimens, as approximately 70% of lung cancers are diagnosed in such samples. Non-small cell lung carcinomas (NSCLCs), in patients with advanced-stage disease, are to be classified into more specific types such as adenocarcinoma or squamous cell carcinoma, whenever possible for several reasons: (1) adenocarcinoma or NSCLC not otherwise specified should be tested for epidermal growth factor receptor (EGFR) mutations as the presence of these mutations is predictive of responsiveness to EGFR tyrosine kinase inhibitors, (2) adenocarcinoma histology is a strong predictor for improved outcome with pemetrexed therapy compared with squamous cell carcinoma, and (3) potential life-threatening hemorrhage may occur in patients with squamous cell carcinoma who receive bevacizumab. If the tumor cannot be classified based on light microscopy alone, special studies such as immunohistochemistry and/or mucin stains should be applied to classify the tumor further. Use of the term NSCLC not otherwise specified should be minimized. Conclusions: This new classification strategy is based on a multidisciplinary approach to diagnosis of lung adenocarcinoma that incorporates clinical, molecular, radiologic, and surgical issues, but it is primarily based on histology. This classification is intended to support clinical practice, and research investigation and clinical trials. As EGFR mutation is a validated predictive marker for response and progression-free survival with EGFR tyrosine kinase inhibitors in advanced lung adenocarcinoma, we recommend that patients with advanced adenocarcinomas be tested for EGFR mutation. This has implications for strategic management of tissue, particularly for small biopsies and cytology samples, to maximize high-quality tissue available for molecular studies. Potential impact for tumor, node, and metastasis staging include adjustment of the size T factor according to only the invasive component (1) pathologically in invasive tumors with lepidic areas or (2) radiologically by measuring the solid component of part-solid nodules.


Archives of Pathology & Laboratory Medicine | 2013

Diagnosis of Lung Cancer in Small Biopsies and Cytology: Implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification

William D. Travis; Elisabeth Brambilla; Masayuki Noguchi; Andrew G. Nicholson; Kim R. Geisinger; Yasushi Yatabe; Yuichi Ishikawa; Ignacio I. Wistuba; Douglas B. Flieder; Wilbur A. Franklin; Adi F. Gazdar; Philip Hasleton; Douglas W. Henderson; Keith M. Kerr; Iver Petersen; Victor L. Roggli; Ming Tsao

The new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification provides, for the first time, standardized terminology for lung cancer diagnosis in small biopsies and cytology; this was not primarily addressed by previous World Health Organization classifications. Until recently there have been no therapeutic implications to further classification of NSCLC, so little attention has been given to the distinction of adenocarcinoma and squamous cell carcinoma in small tissue samples. This situation has changed dramatically in recent years with the discovery of several therapeutic options that are available only to patients with adenocarcinoma or NSCLC, not otherwise specified, rather than squamous cell carcinoma. This includes recommendation for use of special stains as an aid to diagnosis, particularly in the setting of poorly differentiated tumors that do not show clear differentiation by routine light microscopy. A limited diagnostic workup is recommended to preserve as much tissue for molecular testing as possible. Most tumors can be classified using a single adenocarcinoma marker (eg, thyroid transcription factor 1 or mucin) and a single squamous marker (eg, p40 or p63). Carcinomas lacking clear differentiation by morphology and special stains are classified as NSCLC, not otherwise specified. Not otherwise specified carcinomas that stain with adenocarcinoma markers are classified as NSCLC, favor adenocarcinoma, and tumors that stain only with squamous markers are classified as NSCLC, favor squamous cell carcinoma. The need for every institution to develop a multidisciplinary tissue management strategy to obtain these small specimens and process them, not only for diagnosis but also for molecular testing and evaluation of markers of resistance to therapy, is emphasized.


Journal of Thoracic Oncology | 2006

Bronchioloalveolar carcinoma and lung adenocarcinoma: the clinical importance and research relevance of the 2004 World Health Organization pathologic criteria.

William D. Travis; Kavita Garg; Wilbur A. Franklin; Ignacio I. Wistuba; Bradley S. Sabloff; Masayuki Noguchi; Ryutaro Kakinuma; Maureen F. Zakowski; Michelle S. Ginsberg; Robert F. Padera; Francine L. Jacobson; Bruce E. Johnson; Fred R. Hirsch; E. Brambilla; Douglas B. Flieder; Kim R. Geisinger; Frederik B. Thunnissen; Keith M. Kerr; David F. Yankelevitz; Teri J. Franks; Jeffrey R. Galvin; Douglas W. Henderson; Andrew G. Nicholson; Philip Hasleton; Victor L. Roggli; Ming-Sound Tsao; Federico Cappuzzo; Madeline Vazquez

Introduction: Advances in the pathology and computed tomography (CT) of lung adenocarcinoma and bronchioloalveolar carcinoma (BAC) have demonstrated important new prognostic features that have led to changes in classification and diagnostic criteria. Methods: The literature and a set of cases were reviewed by a pathology/CT review panel of pathologists and radiologists who met during a November 2004 International Association for the Study of Lung Cancer/American Society of Clinical Oncology consensus workshop in New York. The group addressed the question of whether sufficient data exist to modify the 2004 World Health Organization (WHO) classification of adenocarcinoma and BAC to define a “minimally invasive” adenocarcinoma with BAC. The problems of diffuse and/or multicentric BAC and adenocarcinoma were evaluated. Results: The clinical concept of BAC needs to be reevaluated with careful attention to the new 2004 WHO criteria because of the major clinical implications. Existing data indicate that patients with solitary, small, peripheral BAC have a 100% 5-year survival rate. The favorable prognostic impact of the restrictive criteria for BAC is already being detected in major epidemiologic data sets such as the Surveillance Epidemiology and End-Results registry. Most lung adenocarcinomas, including those with a BAC component, are invasive and consist of a mixture of histologic patterns. Therefore, they are best classified as adenocarcinoma, mixed subtype. This applies not only to adenocarcinomas with a solitary nodule presentation but also to tumors with a diffuse/multinodular pattern. The percentage of BAC versus invasive components in lung adenocarcinomas seems to be prognostically important. However, at the present time, a consensus definition of “minimally invasive” BAC with a favorable prognosis was not recommended by the panel, so the 1999/2004 WHO criteria for BAC remain unchanged. In small biopsy specimens or cytology specimens, recognition of a BAC component is possible. However, it is not possible to exclude an invasive component. The diagnosis of BAC requires thorough histologic sampling of the tumor. Conclusion: Advances in understanding of the pathology and CT features of BAC and adenocarcinoma have led to important changes in diagnostic criteria and classification of BAC and adenocarcinoma. These criteria need to be uniformly applied by pathologists, radiologists, clinicians, and researchers. The 2004 WHO classification of adenocarcinoma is readily applicable to research studies, but attention needs to be placed on the relative proportion of the adenocarcinoma subtypes. Other recently recognized prognostic features such as size of scar, size of invasive component, or pattern of invasion also seem to be important. More work is needed to determine the most important prognostic pathologic features in lung adenocarcinoma.


Pathology | 2004

After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997–2004

Douglas W. Henderson; Klaus Rödelsperger; Hans-Joachim Woitowitz; James Leigh

Despite an extensive literature, the relationship between asbestos exposure and lung cancer remains the subject of controversy, related to the fact that most asbestos-associated lung cancers occur in those who are also cigarette smokers: because smoking represents the strongest identifiable lung cancer risk factor among many others, and lung cancer is not uncommon across industrialised societies, analysis of the combined (synergistic) effects of smoking and asbestos on lung cancer risk is a more complex exercise than the relationship between asbestos inhalation and mesothelioma. As a follow-on from previous reviews of prevailing evidence, this review critically evaluates more recent studies on this relationship--concentrating on those published between 1997 and 2004--including lung cancer to mesothelioma ratios, the interactive effects of cigarette smoke and asbestos in combination, and the cumulative exposure model for lung cancer induction as set forth in The Helsinki Criteria and The AWARD Criteria (as opposed to the asbestosis-->cancer model), together with discussion of differential genetic susceptibility/resistance factors for lung carcinogenesis by both cigarette smoke and asbestos. The authors conclude that: (i) the prevailing evidence strongly supports the cumulative exposure model; (ii) the criteria for probabilistic attribution of lung cancer to mixed asbestos exposures as a consequence of the production and end-use of asbestos-containing products such as insulation and asbestos-cement building materials--as embodied in The Helsinki and AWARD Criteria--conform to, and are further consolidated by, the new evidence discussed in this review; (iii) different attribution criteria (e.g., greater cumulative exposures) are appropriate for chrysotile mining/milling and perhaps for other chrysotile-only exposures, such as friction products manufacture, than for amphibole-only exposures or mixed asbestos exposures; and (iv) emerging evidence on genetic susceptibility/resistance factors for lung cancer risk as a consequence of cigarette smoking, and potentially also asbestos exposure, suggests that genotypic variation may represent an additional confounding factor potentially affecting the strength of association and hence the probability of causal contribution in the individual subject, but at present there is insufficient evidence to draw any meaningful conclusions concerning variation in asbestos-mediated lung cancer risk relative to such resistance/susceptibility factors.


Journal of Thoracic Disease | 2013

Guidelines for the diagnosis and treatment of malignant pleural mesothelioma

Nico van Zandwijk; C.A. Clarke; Douglas W. Henderson; A. William Musk; Kwun M. Fong; Anna K. Nowak; Robert Loneragan; Brian C. McCaughan; Michael Boyer; Malcolm Feigen; Penelope Schofield; Beth Ivimey Nick Pavlakis; Jocelyn McLean; Henry M. Marshall; Steven C. Leong; Victoria Keena; Andrew Penman

Malignant Pleural Mesothelioma (MPM), the asbestos-induced neoplasm originating in the mesothelial lining of the lung cavities represents significant diagnostic and therapeutic challenges for clinicians in Australia. Very seldom diagnosed prior to the advent of widespread asbestos mining in the early to midtwentieth century, it has sharply risen in incidence over the last five decades. According to the most recent Australian Institute of Health and Welfare data, there were 666 cases of malignant mesothelioma diagnosed in Australia in 2009 and around 90% of them originated in the pleura.


Archives of Pathology & Laboratory Medicine | 2013

Diagnosis of lung adenocarcinoma in resected specimens: Implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European respiratory society classification

William D. Travis; Elisabeth Brambilla; Masayuki Noguchi; Andrew G. Nicholson; Kim R. Geisinger; Yasushi Yatabe; Yuichi Ishikawa; Ignacio I. Wistuba; Douglas B. Flieder; Wilbur A. Franklin; Adi F. Gazdar; Philip Hasleton; Douglas W. Henderson; Keith M. Kerr; Yukio Nakatani; Iver Petersen; Victor L. Roggli; Ming Tsao

A new lung adenocarcinoma classification has been published by the International Association for the Study of Lung Cancer, the American Thoracic Society, and the European Respiratory Society. This new classification is needed to provide uniform terminology and diagnostic criteria, most especially for bronchioloalveolar carcinoma. It was developed by an international core panel of experts representing all 3 societies with oncologists/pulmonologists, pathologists, radiologists, molecular biologists, and thoracic surgeons.This summary focuses on the aspects of this classification that address resection specimens. The terms bronchioloalveolar carcinoma and mixed subtype adenocarcinoma are no longer used. For resection specimens, new concepts are introduced, such as adenocarcinoma in situ and minimally invasive adenocarcinoma for small solitary adenocarcinomas with either pure lepidic growth (adenocarcinoma in situ) and predominant lepidic growth with invasion of 5 mm or less (minimally invasive adenocarcinoma), to define the condition of patients who will have 100% or near 100% disease-specific survival, respectively, if they undergo complete lesion resection. Adenocarcinoma in situ and minimally invasive adenocarcinoma are usually nonmucinous, but rarely may be mucinous. Invasive adenocarcinomas are now classified by predominant pattern after using comprehensive histologic subtyping with lepidic (formerly most mixed subtype tumors with nonmucinous bronchioloalveolar carcinoma), acinar, papillary, and solid patterns; micropapillary is added as a new histologic subtype. Variants include invasive mucinous adenocarcinoma (formerly mucinous bronchioloalveolar carcinoma), colloid, fetal, and enteric adenocarcinoma.It is possible that this classification may impact the next revision of the TNM staging classification, with adjustment of the size T factor according to only the invasive component pathologically in adenocarcinomas with lepidic areas.


Archives of Pathology & Laboratory Medicine | 2010

Pathology of Asbestosis-An Update of the Diagnostic Criteria Report of the Asbestosis Committee of the College of American Pathologists and Pulmonary Pathology Society

Victor L. Roggli; Allen R. Gibbs; Richard Attanoos; Andrew Churg; Helmut Popper; Philip T. Cagle; Bryan Corrin; Teri J. Franks; Françoise Galateau-Sallé; Jeffrey R. Galvin; Philip Hasleton; Douglas W. Henderson; Koichi Honma

UNLABELLED Asbestosis is defined as diffuse pulmonary fibrosis caused by the inhalation of excessive amounts of asbestos fibers. Pathologically, both pulmonary fibrosis of a particular pattern and evidence of excess asbestos in the lungs must be present. Clinically, the disease usually progresses slowly, with a typical latent period of more than 20 years from first exposure to onset of symptoms. DIFFERENTIAL DIAGNOSIS IDIOPATHIC PULMONARY FIBROSIS: The pulmonary fibrosis of asbestosis is interstitial and has a basal subpleural distribution, similar to that seen in idiopathic pulmonary fibrosis, which is the principal differential diagnosis. However, there are differences between the 2 diseases apart from the presence or absence of asbestos. First, the interstitial fibrosis of asbestosis is accompanied by very little inflammation, which, although not marked, is better developed in idiopathic pulmonary fibrosis. Second, in keeping with the slow tempo of the disease, the fibroblastic foci that characterize idiopathic pulmonary fibrosis are infrequent in asbestosis. Third, asbestosis is almost always accompanied by mild fibrosis of the visceral pleura, a feature that is rare in idiopathic pulmonary fibrosis. DIFFERENTIAL DIAGNOSIS RESPIRATORY BRONCHIOLITIS: Asbestosis is believed to start in the region of the respiratory bronchiole and gradually extends outward to involve more and more of the lung acinus, until the separate foci of fibrosis link, resulting in the characteristically diffuse pattern of the disease. These early stages of the disease are diagnostically problematic because similar centriacinar fibrosis is often seen in cigarette smokers and is characteristic of mixed-dust pneumoconiosis. Fibrosis limited to the walls of the bronchioles does not represent asbestosis. ROLE OF ASBESTOS BODIES Histologic evidence of asbestos inhalation is provided by the identification of asbestos bodies either lying freely in the air spaces or embedded in the interstitial fibrosis. Asbestos bodies are distinguished from other ferruginous bodies by their thin, transparent core. Two or more asbestos bodies per square centimeter of a 5- mu m-thick lung section, in combination with interstitial fibrosis of the appropriate pattern, are indicative of asbestosis. Fewer asbestos bodies do not necessarily exclude a diagnosis of asbestosis, but evidence of excess asbestos would then require quantitative studies performed on lung digests. ROLE OF FIBER ANALYSIS Quantification of asbestos load may be performed on lung digests or bronchoalveolar lavage material, employing either light microscopy, scanning electron microscopy, or transmission electron microscopy. Whichever technique is employed, the results are only dependable if the laboratory is well practiced in the method chosen, frequently performs such analyses, and the results are compared with those obtained by the same laboratory applying the same technique to a control population.


Cancer | 1998

The use of epithelial membrane antigen and silver-stained nucleolar organizer regions testing in the differential diagnosis of mesothelioma from benign reactive mesothelioses

Karen D. Wolanski; Darrel Whitaker; Keith B. Shilkin; Douglas W. Henderson

The accurate diagnosis of pleural lesions obtained from small closed biopsy is difficult. As yet there is no single reliable test to distinguish between malignant and benign mesothelial tissue.


Journal of Thoracic Oncology | 2011

Low Calretinin Expression and High Neutrophil-To- Lymphocyte Ratio Are Poor Prognostic Factors in Patients with Malignant Mesothelioma Undergoing Extrapleural Pneumonectomy

Steven Kao; Sonja Klebe; Douglas W. Henderson; Glen Reid; Mark Chatfield; Nicola J. Armstrong; Tristan D. Yan; Janette Vardy; Stephen Clarke; Nico van Zandwijk; Brian C. McCaughan

Introduction: Survival after extrapleural pneumonectomy (EPP) is variable in patients with malignant pleural mesothelioma (MPM), and there are no validated prognostic factors that could be used preoperatively. We investigated the calretinin and D2-40 expression and the neutrophil-to-lymphocyte ratio (NLR), an index of systemic inflammation as potential preoperative prognostic factors. Methods: Consecutive patients who underwent EPP were included in this retrospective study. Potential prognostic factors such as age, gender, histological subtype, baseline laboratory parameters including NLR, and immunohistochemical staining for calretinin and D2-40 were evaluated. Overall survival (OS) from the date of surgery was determined by the Kaplan-Meier method. The prognostic value of the variables was examined using Cox regression, and significant factors (p < 0.05) were entered into a multivariate model to determine their independent effect. Results: A total of 85 patients were included: median age 58 years; 80% men; 77% epithelial and 23% biphasic MPM. The median OS was 19.7 months. The following variables were predictive of longer OS: female gender (p = 0.02), epithelial subtype (p = 0.04), low NLR (p < 0.01), and high calretinin score (p < 0.001). In a multivariate analysis, only NLR ≥3 (hazard ratio 1.79; 95% confidence interval: 1.04–3.07; p = 0.04) and calretinin score ≤33 versus more than 67% (hazard ratio 4.72; 95% confidence interval: 1.97–11.32; p < 0.01) remained independent predictors. The addition of calretinin score increased the explained variation by 10.1%. Conclusions: Both low calretinin expression and high NLR were independently associated with poor prognosis in patients with MPM undergoing EPP, and the calretinin score seemed to improve the accuracy of the prognostic model.


Journal of Clinical Pathology | 2013

Challenges and controversies in the diagnosis of mesothelioma: Part 1. Cytology-only diagnosis, biopsies, immunohistochemistry, discrimination between mesothelioma and reactive mesothelial hyperplasia, and biomarkers

Douglas W. Henderson; Glen Reid; Steven Kao; van Zandwijk N; Sonja Klebe

The detection of neoplastic invasion remains the linchpin for a clear diagnosis of malignant mesothelioma. Cytology-only diagnosis of epithelioid mesothelioma on aspirated effusion fluid remains controversial. A major problem is poor sensitivity, although cytodiagnosis is achievable in many cases at a high order of specificity, especially when a large volume of effusion fluid is submitted for cytological evaluation, enabling the preparation of cell-block sections for immunohistochemical investigation and when the cytological findings can be correlated with imaging studies to assess the anatomical distribution of the lesion and evidence of nodularity of the pleural disorder and, in some cases, to demonstrate evidence of invasion. Although ‘positive’ and ‘negative’ immunohistochemical markers have proved remarkably effective in distinguishing between epithelioid mesothelioma and secondary carcinoma and other malignant tumours metastatic to serosal membranes, no mesothelial marker has 100% sensitivity and specificity for mesothelioma diagnosis, so that panels of ‘positive’ antibodies and markers with negative predictive value are required. At present, no tissue or serum marker (including the molecular detection of p16/CDKN2A) has been proved to have sufficient specificity, consistency and reproducibility that it can replace evidence of invasion as the decisive marker for diagnosis when there is any uncertainty concerning a diagnosis of epithelioid mesothelioma and in the case of atypical fibrous lesions of the pleura (especially collagen-rich lesions, namely fibrous pleuritis vs desmoplastic mesothelioma), in which even the assessment of invasion can be problematical as illustrated in part 2 of this review.

Collaboration


Dive into the Douglas W. Henderson's collaboration.

Top Co-Authors

Avatar

Sonja Klebe

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian C. McCaughan

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Nicholson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William D. Travis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge