Dragan I. Obradović
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dragan I. Obradović.
Neuropsychopharmacology | 2008
Miroslav M. Savić; Shengming Huang; Roman Furtmüller; Terry Clayton; Sigismund Huck; Dragan I. Obradović; Nenad Ugresic; Werner Sieghart; Dubravko Bokonjic; James M. Cook
Classical benzodiazepines (BZs) exert anxiolytic, sedative, hypnotic, muscle relaxant, anticonvulsive, and amnesic effects through potentiation of neurotransmission at GABAA receptors containing α1, α2, α3 or α5 subunits. Genetic studies suggest that modulation at the α1 subunit contributes to much of the adverse effects of BZs, most notably sedation, ataxia, and amnesia. Hence, BZ site ligands functionally inactive at GABAA receptors containing the α1 subunit are considered to be promising leads for novel, anxioselective anxiolytics devoid of sedative properties. In pursuing this approach, we used two-electrode voltage clamp experiments in Xenopus oocytes expressing recombinant GABAA receptor subtypes to investigate functional selectivity of three newly synthesized BZ site ligands and also compared their in vivo behavioral profiles. The compounds were functionally selective for α2-, α3-, and α5-containing subtypes of GABAA receptors (SH-053-S-CH3 and SH-053-S-CH3-2′F) or essentially selective for α5 subtypes (SH-053-R-CH3). Possible influences on behavioral measures were tested in the elevated plus maze, spontaneous locomotor activity, and rotarod test, which are considered primarily predictive of the anxiolytic, sedative, and ataxic influence of BZs, respectively. The results confirmed the substantially diminished ataxic potential of BZ site agonists devoid of α1 subunit-mediated effects, with preserved anti-anxiety effects at 30 mg/kg of SH-053-S-CH3 and SH-053-S-CH3-2′F. However, all three ligands, dosed at 30 mg/kg, decreased spontaneous locomotor activity, suggesting that sedation may be partly dependent on activity mediated by α5-containing GABAA receptors. Hence, it could be of importance to avoid substantial agonist activity at α5 receptors by candidate anxioselective anxiolytics, if clinical sedation is to be avoided.
Neural Plasticity | 2005
Miroslav M. Savić; Dragan I. Obradović; Nenad Ugresic; Dubravko Bokonjic
Benzodiazepines are well established as inhibitory modulators of memory processing. This effect is especially prominent when applied before the acquisition phase of a memory task. This minireview concentrates on the putative subtype selectivity of the acquisition-impairing action of benzodiazepines. Namely, recent genetic studies and standard behavioral tests employing subtype-selective ligands pointed to the predominant involvement of two subtypes of benzodiazepine binding sites in memory modulation. Explicit memory learning seems to be affected through the GABAA receptors containing the α1 and α1 subunits, whereas the effects on procedural memory can be mainly mediated by the α1 subunit. The pervading involvement of the α1 subunit in memory modulation is not at all unexpected because this subunit is the major subtype, present in 60% of all GABAA receptors. On the other hand, the role of α5 subunits, mainly expressed in the hippocampus, in modulating distinct forms of memory gives promise of selective pharmacological coping with certain memory deficit states.
Pharmacology, Biochemistry and Behavior | 2004
Miroslav M. Savić; Dragan I. Obradović; Nenad Ugresic; James M. Cook; Wenyuan Yin; Dubravko Bokonjic
Recent research using genetically modified mice has pointed to the specific contribution of individual receptor subtypes to the various effects of benzodiazepines. The aim of this study was to examine the relative significance of alpha(1)-containing GABA(A) receptors in the effects of modulators at the benzodiazepine site in the elevated plus-maze (EPM) under dim red light in rats. We tested the effects of the non-selective antagonist flumazenil (0-20.0 mg/kg), the preferential alpha(1)-subunit selective antagonist beta-carboline-3-carboxylate-t-butyl ester (beta-CCt, 0-30.0 mg/kg), the non-selective agonist midazolam (0-2.0 mg/kg), the preferential alpha(1)-subunit selective agonist zolpidem (0-2.0 mg/kg) and the non-selective inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM, 0-2.0 mg/kg). The influence of flumazenil (10.0 mg/kg) and beta-CCt (30.0 mg/kg) on the effects of both kinds of agonists were also examined. The standard spatio-temporal parameters reflecting anxiety (percentage of open arm entries and time) and locomotion (closed and total arm entries) were analyzed. beta-CCt did not affect behavior, while flumazenil at the highest dose (20.0 mg/kg) decreased indices of open arm activity and total arm entries. Midazolam at the dose of 1.0 mg/kg significantly increased the percentage of open arm time, whereas at 2.0 mg/kg both anxiety-related parameters were increased. In contrast to the open arm entries, the open arm time was independent of the decreased closed arm entries, observed at 2.0 mg/kg. Flumazenil abolished these effects, whereas beta-CCt partially potentiated the anxiolytic actions of midazolam. Zolpidem significantly increased both open-arm indices at 1.0 mg/kg, but the effect was dependent on the decreased closed arm entries. The selectivity of the anxiolytic-like effects of zolpidem was further checked under brighter white illumination. In these settings, the influence on anxiety-related, but not activity-related parameters, was absent. All of the activity-related effects of midazolam and zolpidem were mainly counteracted by both antagonists. DMCM produced significant anxiogenic effects at 1.0 mg/kg (open arm time) and 2.0 mg/kg (both parameters). beta-CCt (30.0 mg/kg) and flumazenil at higher dose (20.0 mg/kg) antagonized the effects of DMCM. The results indicate the anxiolytic effects of a non-selective benzodiazepine site agonist involve a predominant role of subunits other than alpha(1), whereas the behavioral indices of the anxiolytic-like properties of an alpha(1)-selective ligand, if observed, depend on the experimental settings and the changes in locomotor activity, and hence were behaviorally non-specific. The present results generally correspond well to the behavioral findings with the genetically modified mice. On the other hand, the relative significance of the alpha(1)-subunit in the anxiogenic effects of DMCM could not be clearly deduced.
Behavioural Brain Research | 2005
Miroslav M. Savić; Dragan I. Obradović; Nenad Ugresic; James M. Cook; Wenyuan Yin; Dubravko Bokonjic
Recent research on genetically modified mice has attributed the amnesic effect of benzodiazepines mainly to the alpha1-containing GABA(A) receptor subtypes. The pharmacological approach, using subtype selective ligands, is needed to complement genetic studies. We tested the effects of the non-selective antagonist flumazenil (0-20.0 mg/kg), the preferential alpha1-subunit selective antagonist beta-carboline-3-carboxylate-t-butyl ester (beta-CCt) (0-30.0 mg/kg), the non-selective agonist midazolam (0-2.0 mg/kg), the preferential alpha1-subunit selective agonist zolpidem (0-3.0 mg/kg), and the non-selective inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) (0-2.0 mg/kg) in the one-trial step-through passive avoidance task in rats. The compounds were administered intraperitoneally, before the acquisition test. Flumazenil and beta-CCt did not affect retention performance. Midazolam and zolpidem induced amnesia in a dose-dependent manner. The complete reversal of amnesia was unattainable. The effects of zolpidem were significantly attenuated by the both, flumazenil (10.0 mg/kg) and beta-CCt (30.0 mg/kg); by contrast, only flumazenil was considerably effective when combined with midazolam. DMCM exerted promnesic effects at 0.2mg/kg, in an inverted U-shape manner. Both antagonists tended to abolish this action. The results indicate that some other alpha-subunit(s), in addition to the alpha1-subunit, contribute to the amnesic actions of non-selective benzodiazepine site agonists in the passive avoidance task. On the other hand, a significant part of the DMCM-induced promnesic effect could involve the alpha1-subunit and/or other putative beta-CCt-sensitive binding site(s).
Pharmacology, Biochemistry and Behavior | 2004
Dragan I. Obradović; Miroslav M. Savić; Draginja S. Andjelković; Nenad Ugresic; Dubravko Bokonjic
The purpose of the present study was to examine the influence of midazolam on the retrieval and acquisition rate of two-way active avoidance in rats. In the schedule 2 x 100 trials, the effects of midazolam (0.5-5.0 mg/kg), benzodiazepine binding site antagonist flumazenil (2.5-10.0 mg/kg), specific antagonist of GABA(A) receptor, bicuculline (0.5-4.0 mg/kg), and the blocker of GABA(A) receptor containing Cl(-) channels, picrotoxin (1.0-5.0 mg/kg), on the second day retrieval of avoidance performance were investigated, as well as the influence of the used blockers of GABA(A) receptor function on midazolam effects. Furthermore, the effect of midazolam (1.0 mg/kg) on acquisition rate in the 5 x 50 schedule, as well as the effects of third day treatment changing in that paradigm, was examined. Throughout the study, drugs were given intraperitoneally, 30 min before testing. Midazolam at the dose of 1.0 mg/kg facilitated avoidance retrieval, whereas flumazenil and bicuculline did not significantly change behavior. Picrotoxin (5.0 mg/kg) diminished performance. All three kinds of blockers used abolished facilitatory action of midazolam, confirming GABAergic mediation of the effect of benzodiazepine. Midazolam (1.0 mg/kg) increased acquisition rate during five consecutive days relative to saline, but without significant effect on the first day acquisition. In the case of third day changing of treatments, the intersection of regression rate lines was detected. Results from active avoidance paradigm experimentally support the findings from human studies that in certain circumstances, benzodiazepines, potentiating GABAergic neurotransmission, could produce retrieval-enhancing effects in memory tasks.
Pharmacological Research | 2003
Dragan I. Obradović; Miroslav M. Savić; Draginja S. Andjelković; Nenad Ugresic; Dubravko Bokonjic
This study investigated the impact of benzodiazepine receptor agonist, midazolam and antagonist, flumazenil, on the rat frontal cortex slices oxygen consumption (QO(2)), in presence and absence of gamma-aminobutyric acid (GABA). QO(2) was polarographically determined, using the biological oxygen monitor. As it was previously shown, GABA on its own decreases QO(2) moderately. Midazolam decreased QO(2) at 1.0mg/kg, whereas flumazenil had no effect. In combination with per se ineffective GABA (10(-6)mol/l), flumazenil showed respiratory depressant action, presumably revealing partial agonistic activity at some of GABA(A) receptor subtypes. However, it completely antagonized effects of midazolam on QO(2), on its own and in presence of GABA. Our results show that in vivo well-established effects of midazolam on cerebral metabolic activity could be reproduced in in vitro settings. Moreover, flumazenil antagonized this action, indicating the role of GABA(A)-benzodiazepine receptor complex activation in QO(2) regulation.
Pharmacology, Biochemistry and Behavior | 2006
Miroslav M. Savić; Dragan I. Obradović; Nenad Ugresic; James M. Cook; Wenyuan Yin; Michael L. Van Linn; Dubravko Bokonjic
Benzodiazepine site inverse agonists may increase or decrease locomotor activity in rodents, depending on the experimental settings. We have compared the behavioral responses to environmental novelty of rats treated with the non-selective inverse agonist DMCM (2 mg/kg) and the alpha1-subunit affinity-selective inverse agonist 3-EBC (15 mg/kg). The behavior in spontaneous locomotor assay (during 45 min) and elevated plus maze (EPM) was automatically recorded. In the EPM, general activity-related parameters were similarly decreased, whereas only DMCM inhibited open-arm activity. In the locomotor assay, both compounds depressed locomotion in the first 15 min and activity in the central zone of the chamber. However, the influence of 3-EBC was less pronounced. The alpha1-subunit selective antagonist beta-CCt (15 mg/kg) attenuated locomotor depression, but not the central-zone avoidance elicited by DMCM. When habituated to the chamber, DMCM-treated animals emitted a plateau phase of activity, which disappeared by adding beta-CCt. Hence, inhibition of activity in exposed areas may be mediated by non-alpha1-subunits, whereas both alpha1 and non-alpha1-subunits may participate in suppression of activity in more protective areas of an apparatus. Hyperlocomotion in habituated animals may depend primarily on the alpha1-subunit. Moreover, the bimodal influence of inverse agonists on locomotion can be biphasic, observable in the same experiment.
Behavioural Brain Research | 2012
Janko Samardžić; Dubravka Švob Štrac; Miljana Obradović; Dejan Oprić; Dragan I. Obradović
There are several modulatory sites at GABA(A) receptors, which mediate the actions of many drugs, among them benzodiazepine. Three kinds of allosteric modulators act through the benzodiazepine binding site: positive (agonist), neutral (antagonist), and negative (inverse agonist). The goal of the present study was to examine the influence of the inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) acting on α GABA(A) receptor and compare its dose-response effects on memory and depression-like behavior. We independently studied the effects of DMCM (0.05-1.0 mg/kg) on retention versus acquisition of active avoidance and depression-like behavior in the forced swim test. Throughout the study, drugs were given intraperitoneally, 30 min before testing. ANOVA has showed that treatment with DMCM significantly affected retrieval of avoidance response (p<0.05), exerted promnesic effects in inverted U-shape manner. Dunnetts test indicated that the DMCM avoidance-facilitatory dose was 0.1mg/kg. At the dose facilitating retrieval of avoidance memory, DMCM significantly (p<0.05, comparison of regression coefficients by Students t-test) and progressively increased acquisition rate during 5 days training, compared to the saline group. In forced swim test, ANOVA indicated statistically significant effects of DMCM (p<0.05). Dunnetts analysis showed that DMCM significantly decreased immobility time at the dose of 0.1mg/kg, exerted acute antidepressant-like effects. Our results experimentally support the findings that under certain circumstances, nonselective benzodiazepine site inverse agonists, produce memory-enhancing and antidepressant-like effects. The molecular and neuronal substrates linking the actions of specific GABA-benzodiazepine receptor complex subunits remains to be further elucidated.
Pharmacological Research | 2002
Dragan I. Obradović; Dubravko Bokonjic; Miroslav M. Savić; Draginja S. Andjelković; Nenad Ugresic; Milos P. Stojiljkovic
This study investigated the impact of modulating the gamma-aminobutyric acid(A) (GABA)(A)-benzodiazepine receptor complex activity on the rat frontal cortex slices oxygen consumption (QO(2)), polarographically determined using the biological oxygen monitor. Throughout the study, diazepam, flumazenil and picrotoxin were administered i.p. 30 min before sacrificing animals and obtaining slice preparations, while GABA was added directly into the medium in the reaction chamber. GABA decreased QO(2) in concentrations of 5 x 10(-4), 10(-2) and 5 x 10(-2)mol l(-1), while 10(-5) and 10(-6)mol l(-1) GABA had no effect, as well as diazepam, flumazenil and picrotoxin. All diazepam doses (1, 2.5 and 5 mg kg(-1)) increased action of 5 x 10(-4)mol l(-1) GABA, whereas 2.5 mg kg(-1) dose amplified the effect of 10(-6)mol l(-1) GABA. Flumazenil and picrotoxin (5 mg kg(-1) both) blocked diazepams effects. Flumazenil augmented 10(-6)mol l(-1) GABA effects, while picrotoxin and flumazenil abolished the effects of 5 x 10(-4)mol l(-1) GABA. To our knowledge, this is the first study to examine the influence of modulation of GABA(A)-benzodiazepine receptor function on cerebral metabolism of oxygen in in vitro settings. The results are in accordance with those obtained in numerous in vivo studies, pointing to the moderate level of influence of GABA(A)-benzodiazepine receptor complex on QO(2) regulation.
Vojnosanitetski Pregled | 2003
Dragan I. Obradović; Miroslav M. Savić; Nenad Ugresic; Dubravko Bokonjic
Mehanizam delovanja benzodiazepina, najsire primenjivanih lekova u terapiji anksioznih poremecaja (1-5), utvrden je 15-ak godina nakon njihovog uvodenja u klinicku praksu sezdescrih godina dvadesetog veka (6, 7). Dodatnih 20-ak godina je proteklo do punog razotkrivanja kompleksne arhitekture benzodiazepinskog receptora, preko kojeg ovi lekovi deluju (8, 9). Pokazalo se da klasicni benzodiazepini, kao sto je diazepam, svoje efekte ostvaruju ornogucavanjem aktivnosti neurotransmitera y-aminobuterne kiseline (GABA) na jednom broju receptora za GABA-u (benzodiazepin-senzitivni receptori), dok se ne vezuju za preostalu populaciju receptora (benzodiazepinnesenzitivni receptori) (9). Na kraju dvadesetog veka, primenom tehnologija genetski modifikovanih zivotinja (10), stekli su se uslovi za pocetak utvrdivanja korelacije izmedu pojedinih efekata benzodiazepina i njihovog specificnog molekulskog i neuronskog supstrata (II). Ova izuzetno aktuelna istrazivanja ce, sada je vee izvesno, imati za posledicu razvoj selektivnih lekova koji deluju preko benzodiazepinskog receptora sa novim, suzenim profilom dejstava, terapijskih i nezeljenih (12).