Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dragan Isailovic is active.

Publication


Featured researches published by Dragan Isailovic.


Journal of Proteome Research | 2008

Profiling of Human Serum Glycans Associated with Liver Cancer and Cirrhosis by IMS-MS

Dragan Isailovic; Ruwan T. Kurulugama; Manolo D. Plasencia; Sarah T. Stokes; Zuzana Kyselova; Radoslav Goldman; Yehia Mechref; Milos V. Novotny; David E. Clemmer

Aberrant glycosylation of human glycoproteins is related to various physiological states, including the onset of diseases such as cancer. Consequently, the search for glycans that could be markers of diseases or targets of therapeutic drugs has been intensive. Here, we describe a high-throughput ion mobility spectrometry/mass spectrometry analysis of N-linked glycans from human serum. Distributions of glycans are assigned according to their m/z values, while ion mobility distributions provide information about glycan conformational and isomeric composition. Statistical analysis of data from 22 apparently healthy control patients and 39 individuals with known diseases (20 with cirrhosis of the liver and 19 with liver cancer) shows that ion mobility distributions for individual m/z ions appear to be sufficient to distinguish patients with liver cancer or cirrhosis. Measurements of glycan conformational and isomeric distributions by IMS-MS may provide insight that is valuable for detecting and characterizing disease states.


Journal of the American Society for Mass Spectrometry | 2008

Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS.

Manolo D. Plasencia; Dragan Isailovic; Samuel I. Merenbloom; Yehia Mechref; David E. Clemmer

Ion mobility-mass spectrometry (IMS-MS) and molecular modeling techniques have been used to characterize ovalbumin N-linked glycans. Some glycans from this glycoprotein exist as multiple isomeric forms. The gas-phase separation makes it possible to resolve some isomers before MS analysis. Comparisons of experimental cross sections for selected glycan isomers with values that are calculated for iterative structures generated by molecular modeling techniques allow the assignment of sharp features to specific isomers. We focus here on an example glycan set, each having a m/z value of 1046.52 with formula [H5N4+2Na]2+, where H corresponds to a hexose, and N to a N-acetylglucosamine. This glycan appears to exist as three different isomeric forms that are assignable based on comparisons of measured and calculated cross sections. We estimate the relative ratios of the abundances of the three isomers to be in the range of ∼1.0:1.35:0.85 to ∼1.0:1.5:0.80. In total, IMS-MS analysis of ovalbumin N-linked glycans provides evidence for 19 different glycan structures corresponding to high-mannose and hybrid type carbohydrates with a total of 42 distinct features related to isomers and/or conformers.


Protein Expression and Purification | 2012

Detergent selection for enhanced extraction of membrane proteins

Buenafe T. Arachea; Zhen Sun; Nina Potente; Radhika Malik; Dragan Isailovic; Ronald E. Viola

Generating stable conditions for membrane proteins after extraction from their lipid bilayer environment is essential for subsequent characterization. Detergents are the most widely used means to obtain this stable environment; however, different types of membrane proteins have been found to require detergents with varying properties for optimal extraction efficiency and stability after extraction. The extraction profiles of several detergent types have been examined for membranes isolated from bacteria and yeast, and for a set of recombinant target proteins. The extraction efficiencies of these detergents increase at higher concentrations, and were shown to correlate with their respective CMC values. Two alkyl sugar detergents, octyl-β-d-glucoside (OG) and 5-cyclohexyl-1-pentyl-β-d-maltoside (Cymal-5), and a zwitterionic surfactant, N-decylphosphocholine (Fos-choline-10), were generally effective in the extraction of a broad range of membrane proteins. However, certain detergents were more effective than others in the extraction of specific classes of integral membrane proteins, offering guidelines for initial detergent selection. The differences in extraction efficiencies among this small set of detergents supports the value of detergent screening and optimization to increase the yields of targeted membrane proteins.


Nature Communications | 2013

Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen

Lorenza Favrot; Anna E. Grzegorzewicz; Daniel H. Lajiness; Rachel K. Marvin; Julie Boucau; Dragan Isailovic; Mary Jackson; Donald R. Ronning

The increasing prevalence of drug-resistant tuberculosis highlights the need for identifying new antitubercular drugs that can treat these infections. The antigen 85 (Ag85) complex has emerged as an intriguing mycobacterial drug target due to its central role in synthesizing major components of the inner and outer leaflets of the mycobacterial outer membrane. Here we identify ebselen as a potent inhibitor of the Mycobacterium tuberculosis Ag85 complex. Mass spectrometry data show that ebselen binds covalently to a cysteine residue (C209) located near the Ag85C active site. The crystal structure of Ag85C in the presence of ebselen shows that C209 modification restructures the active site, thereby disrupting the hydrogen-bonded network within the active site that is essential for enzymatic activity. C209 mutations display marked decreases in enzymatic activity. These data suggest that compounds using this mechanism of action will strongly inhibit the Ag85 complex and minimize the selection of drug resistance.


Journal of Proteome Research | 2012

Delineating Diseases by IMS-MS Profiling of Serum N-linked Glycans

Dragan Isailovic; Manolo D. Plasencia; M. M. Gaye; Sarah T. Stokes; Ruwan T. Kurulugama; Vitara Pungpapong; Min Zhang; Zuzana Kyselova; Radoslav Goldman; Yehia Mechref; Milos V. Novotny; David E. Clemmer

Altered branching and aberrant expression of N-linked glycans is known to be associated with disease states such as cancer. However, the complexity of determining such variations hinders the development of specific glycomic approaches for assessing disease states. Here, we examine a combination of ion mobility spectrometry (IMS) and mass spectrometry (MS) measurements, with principal component analysis (PCA) for characterizing serum N-linked glycans from 81 individuals: 28 with cirrhosis of the liver, 25 with liver cancer, and 28 apparently healthy. Supervised PCA of combined ion-mobility profiles for several, to as many as 10 different mass-to-charge ratios for glycan ions, improves the delineation of diseased states. This extends an earlier study [J. Proteome Res.2008, 7, 1109-1117] of isomers associated with a single glycan (S(1)H(5)N(4)) in which PCA analysis of the IMS profiles appeared to differentiate the liver cancer group from the other samples. Although performed on a limited number of test subjects, the combination of IMS-MS for different combinations of ions and multivariate PCA analysis shows promise for characterizing disease states.


Journal of Chromatography A | 2004

Isolation and characterization of R-phycoerythrin subunits and enzymatic digests

Dragan Isailovic; Hung-Wing Li; Edward S. Yeung

Subunits and enzymatic digests of the highly fluorescent phycobiliprotein R-phycoerythrin (R-PE) were analyzed by several separation and detection techniques including HPLC, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), CE, and HPLC-electrospray ionization (ESI) MS. R-PE subunits were isolated by HPLC and detected as single molecules by total internal reflection fluorescence microscopy. The results show efficient absorption and fluorescence of the R-PE subunits and digest peptides, originating from the incorporation of phycoerythrobilin and phycourobilin chromophores in them. In addition, HPLC-ESI-MS and SDS-PAGE were optimized to determine the molecular masses of phycobiliprotein subunits and the chromophore-containing peptides, as well as the amino acid sequences of the latter. Favorable spectroscopic and structural properties of R-PE subunits and enzymatic digests, even under denaturing conditions, make these molecules suitable for use as fluorescence labels for biomolecules.


Applied Spectroscopy | 2005

High-Throughput Single-Cell Fluorescence Spectroscopy

Dragan Isailovic; Hung-Wing Li; Gregory J. Phillips; Edward S. Yeung

A high-throughput method for measuring single-cell fluorescence spectra is presented. Upon excitation with a 488 nm argon-ion laser many bacterial cells were imaged by a 20× microscope objective while they moved through a capillary tube. Fluorescence was dispersed by a transmission diffraction grating, and an intensified charge-coupled device (ICCD) camera simultaneously recorded the zero and the first orders of the fluorescence from each cell. Single-cell fluorescence spectra were reconstructed from the distance between zero-order and first-order maxima as well as the length and the pixel intensity distribution of the first-order images. By using this approach, the emission spectrum of E. coli cells expressing green fluorescent protein (GFP) was reconstructed. Also, fluorescence spectra of E. coli cells expressing non-fluorescent apo-subunits of R-phycoerythrin (R-PE) were recorded after incubation of the cells with phycoerythrobilin (PEB) chromophore. The fluorescence spectra are in good agreement with results obtained on the same cells using a fluorescence spectrometer or a fluorescence microscope. When spectra are to be acquired, this approach has a higher throughput, better sensitivity, and better spectral resolution compared to flow cytometry.


ACS Chemical Biology | 2014

Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

Sourav Mukherjee; Warren S. Weiner; Chad E. Schroeder; Denise S. Simpson; Alicia M. Hanson; Noreena L. Sweeney; Rachel K. Marvin; Jean Ndjomou; Rajesh Kolli; Dragan Isailovic; Frank J. Schoenen; David N. Frick

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.


Journal of Microscopy | 2008

Real-time three-dimensional imaging of cell division by differential interference contrast microscopy

Makoto Tsunoda; Dragan Isailovic; Edward S. Yeung

Differential interference contrast (DIC) microscopy can provide information about subcellular components and organelles inside living cells. Applicability to date, however, has been limited to 2D imaging. Unfortunately, understanding of cellular dynamics is difficult to extract from these single optical sections. We demonstrate here that 3D differential interference contrast microscopy has sub‐diffraction limit resolution both laterally and vertically, and can be used for following Madin Darby canine kidney cell division process in real time. This is made possible by optimization of the microscope optics and by incorporating computer‐controlled vertical scanning of the microscope stage.


Biochemistry | 2011

Complexes of the Outer Mitochondrial Membrane Protein MitoNEET with Resveratrol-3-Sulfate

Waqar Arif; Shu Xu; Dragan Isailovic; Werner J. Geldenhuys; Richard T. Carroll; Max O. Funk

Binding of the thiazolidinedione antidiabetic drug pioglitazone led to the discovery of a novel outer mitochondrial membrane protein of unknown function called mitoNEET. The protein is homodimeric and contains a uniquely ligated two iron-two sulfur cluster in each of its two cytosolic domains. Electrospray ionization mass spectrometry was employed to characterize solutions of the soluble cytosolic domain (amino acids 32--108) of the protein. Ions characteristic of dimers containing the cofactors were readily detected under native conditions. mitoNEET responded to exposure to solutions at low pH by dissociation to give monomers that retained the cofactor, followed by dissociation of the cofactor in a concerted fashion. mitoNEET formed complexes with resveratrol-3-sulfate, one of the primary metabolites of the natural product resveratrol. Resveratrol itself showed no tendency to interact with mitoNEET. The formation of complexes was evident in both electrospray ionization mass spectrometry and isothermal titration calorimetry measurements. Up to eight molecules of the compound associated with the dimeric form of the protein in a sequential fashion. Dissociation constants determined by micorcalorimetry were in the range 5-16 μM for the various binding sites. The only other known naturally occurring binding partner for mitoNEET at present is NADPH. It is very interesting that the iron-sulfur cluster containing protein interacts with two potentially redox active substances at the surface of mitochondria. These findings provide a new direction for research into two poorly understood, yet biomedically relevant, species.

Collaboration


Dive into the Dragan Isailovic's collaboration.

Top Co-Authors

Avatar

David E. Clemmer

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Manolo D. Plasencia

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milos V. Novotny

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge