Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dragan Perovic is active.

Publication


Featured researches published by Dragan Perovic.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene

Takao Komatsuda; Congfen He; Perumal Azhaguvel; Hiroyuki Kanamori; Dragan Perovic; Nils Stein; Andreas Graner; Thomas Wicker; Akemi Tagiri; Udda Lundqvist; Tatsuhito Fujimura; Makoto Matsuoka; Takashi Matsumoto; Masahiro Yano

Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1.


Functional & Integrative Genomics | 2004

An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus

Dragan Perovic; Nils Stein; Hangning Zhang; Anke Drescher; Manoj Prasad; R. Kota; Doris Kopahnke; Andreas Graner

The accumulated sequence information of the almost completed rice genome and the transcriptome of other cereals provide an excellent starting point for comparative genome analysis. We performed targeted synteny-based marker saturation for the Rph16 leaf rust resistance locus in barley by extensively exploiting these newly available resources. Out of a collection of over 320,000 public barley ESTs 309 non-redundant candidate syntenic clones have been identified for this region in a two-step in silico selection procedure. For mapping, 54 barley cDNA-clones were selected due to the even distribution of their homologs on a putatively collinear 3-Mb rice BAC contig. Out of these, 97% (30) of the polymorphic markers could be genetically assigned in collinearity to the target region in barley and a set of 11 markers was integrated into an rph16 high-resolution map. Although, the collinear target region of rice does not contain an obvious candidate gene for rph16 the results demonstrate the potential of the presented procedure to efficiently utilize EST resources for synteny-based marker saturation. The systematic genome-wide exploitation of the increasing sequence data resources will strongly improve our current view of genome conservation and likely facilitate a synteny-based isolation of genes conserved across cereal species.


Genetics | 2007

Effects of Introgression and Recombination on Haplotype Structure and Linkage Disequilibrium Surrounding a Locus Encoding Bymovirus Resistance in Barley

Silke Stracke; Thomas Presterl; Nils Stein; Dragan Perovic; Frank Ordon; Andreas Graner

We present a detailed analysis of linkage disequilibrium (LD) in the physical and genetic context of the barley gene Hv-eIF4E, which confers resistance to the barley yellow mosaic virus (BYMV) complex. Eighty-three SNPs distributed over 132 kb of Hv-eIF4E and six additional fragments genetically mapped to its flanking region were used to derive haplotypes from 131 accessions. Three haplogroups were recognized, discriminating between the alleles rym4 and rym5, which each encode for a spectrum of resistance to BYMV. With increasing map distance, haplotypes of susceptible genotypes displayed diverse patterns driven mainly by recombination, whereas haplotype diversity within the subgroups of resistant genotypes was limited. We conclude that the breakdown of LD within 1 cM of the resistance gene was generated mainly by susceptible genotypes. Despite the LD decay, a significant association between haplotype and resistance to BYMV was detected up to a distance of 5.5 cM from the resistance gene. The LD pattern and the haplotype structure of the target chromosomal region are the result of interplay between low recombination and recent breeding history.


Plant Physiology | 2009

Analysis of Intraspecies Diversity in Wheat and Barley Genomes Identifies Breakpoints of Ancient Haplotypes and Provides Insight into the Structure of Diploid and Hexaploid Triticeae Gene Pools

Thomas Wicker; Simon G. Krattinger; Evans S. Lagudah; Takao Komatsuda; Takashi Matsumoto; Sylvie Cloutier; Laurenz Reiser; Hiroyuki Kanamori; Kazuhiro Sato; Dragan Perovic; Nils Stein; Beat Keller

A large number of wheat (Triticum aestivum) and barley (Hordeum vulgare) varieties have evolved in agricultural ecosystems since domestication. Because of the large, repetitive genomes of these Triticeae crops, sequence information is limited and molecular differences between modern varieties are poorly understood. To study intraspecies genomic diversity, we compared large genomic sequences at the Lr34 locus of the wheat varieties Chinese Spring, Renan, and Glenlea, and diploid wheat Aegilops tauschii. Additionally, we compared the barley loci Vrs1 and Rym4 of the varieties Morex, Cebada Capa, and Haruna Nijo. Molecular dating showed that the wheat D genome haplotypes diverged only a few thousand years ago, while some barley and Ae. tauschii haplotypes diverged more than 500,000 years ago. This suggests gene flow from wild barley relatives after domestication, whereas this was rare or absent in the D genome of hexaploid wheat. In some segments, the compared haplotypes were very similar to each other, but for two varieties each at the Rym4 and Lr34 loci, sequence conservation showed a breakpoint that separates a highly conserved from a less conserved segment. We interpret this as recombination breakpoints of two ancient haplotypes, indicating that the Triticeae genomes are a heterogeneous and variable mosaic of haplotype fragments. Analysis of insertions and deletions showed that large events caused by transposable element insertions, illegitimate recombination, or unequal crossing over were relatively rare. Most insertions and deletions were small and caused by template slippage in short homopolymers of only a few base pairs in size. Such frequent polymorphisms could be exploited for future molecular marker development.


Theoretical and Applied Genetics | 2005

High-resolution mapping of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgare L.)

Bettina Pellio; S. Streng; Eva Bauer; Nils Stein; Dragan Perovic; A. Schiemann; Wolfgang Friedt; Frank Ordon; Andreas Graner

Soil-borne barley yellow mosaic virus disease – caused by a complex of at least three viruses, i.e. Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV) and BaYMV-2 – is one of the most important diseases of winter barley in Europe. The two genes rym4, effective against BaMMV and BaYMV, and rym5, additionally effective against BaYMV-2, comprise a complex locus on chromosome 3HL, which is of special importance to European barley breeding. To provide the genetic basis for positional cloning of the Rym4/Rym5 locus, two high-resolution maps were constructed based on co-dominant flanking markers (MWG838/Y57c10 - MWG010/Bmac29). Mapping at a resolution of about 0.05% rec., rym4 has been located 1.07% recombination distal of marker MWG838 and 1.21% recombination proximal to marker MWG010. Based on a population size of 3,884 F2 plants (0.013% recombination) the interval harbouring rym5 was delimited to 1.49±0.14% recombination. By testing segmental recombinant inbred lines (RILs) for reaction to the different viruses at a resolution of 0.05% rec. (rym4) and 0.019% rec. (rym5), no segregation concerning the reaction to the different viruses could be observed. AFLP-based marker saturation for rym4, using 932 PstI+2/MseI+3 primer combinations only resulted in three markers with the closest one linked at 0.9% recombination to the gene. Two of these markers detected epialleles arising from the differential cytosine methylation of PstI sites. Regarding rym5, profiling of 1,200 RAPD primers (about 18,000 loci) and 2,048 EcoRI+3/MseI+3 AFLP primer combinations (about 205,000 loci) resulted in one RAPD marker and seven AFLP markers tightly linked to the resistance gene. Flanking markers with the closest linkage to rym5 (0.05% and 0.88% recombination) were converted into STS markers. These markers provide a starting point for chromosomal walking and may be exploited in marker-assisted selection for virus resistance based on rym5.


Theoretical and Applied Genetics | 2012

Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace

Christina Silvar; Dragan Perovic; Uwe Scholz; Ana M. Casas; Ernesto Igartua; Frank Ordon

The intervals containing two major quantitative trait loci (QTL) from a Spanish barley landrace conferring broad spectrum resistance to Blumeria graminis were subjected to marker saturation. First, all the available information on recently developed marker resources for barley was exploited. Then, a comparative genomic analysis of the QTL regions with other sequenced grass model species was performed. As a result of the first step, 32 new markers were added to the previous map and new flanking markers closer to both QTL were identified. Next, syntenic integration revealed that the barley target regions showed homology with regions on chromosome 6 of rice (Oryza sativa), chromosome 10 of Sorghum bicolor and chromosome 1 of Brachypodium distachyon. A nested insertion of ancestral syntenic blocks on Brachypodium chromosome 1 was confirmed. Based on sequence information of the most likely candidate orthologous genes, 23 new barley unigene-derived markers were developed and mapped within the barley target regions. The assessment of colinearity revealed an inversion on chromosome 7HL of barley compared to the other three grass species, and nearly perfect colinearity on chromosome 7HS. This two-step marker enrichment allowed for the refinement of the two QTL into much smaller intervals. Inspection of all predicted proteins for the barley unigenes identified within the QTL intervals did not reveal the presence of resistance gene candidates. This study demonstrates the usefulness of sequenced genomes for fine mapping and paves the way for the use of these two loci in barley breeding programs.


Journal of Applied Genetics | 2008

A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding.

Mirosław Tyrka; Dragan Perovic; Agnieszka Wardyńska; Frank Ordon

Genomic sequence AY661558, representing a part of the BAC contig of theRym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV/BaYMV), was exploited in order to develop SSR markers for practical barley breeding. Out of 57 SSR motifs found within this sequence, primers were designed and tested for the 5 SSRs with the highest repeat length. The polymorphic SSR marker QLB1 co-segregated withrym4 andrym5 phenotypes in respective high-resolution mapping populations developed for the construction of the original BAC contig. The primers targeted 2 sites located 756 bp and 5173 bp downstream of the translation initiation factor 4E (Hv-eIF4E). Physical linkage of the QLB1 marker to theRym4/Rym5 locus was confirmed experimentally on Morex BAC 519J14, a seed BAC ofHv-eIF4E, and BAC 801A11, which is located proximally toHv-eIF4E. QLB1 revealed 7 alleles in a set of 100 winter barley lines and cultivars. Five alleles were found within 673 advanced breeding lines derived from applied Polish winter barley breeding programmes, which corresponds to a PIC value of 0.684. No recombinants betweenRym4/5 and QLB1 were detected, suggesting that QLB1 can be used efficiently in marker-assisted selection of theHv-eIF4E-mediated bymovirus resistance.


Scientific Reports | 2015

Separating the wheat from the chaff – a strategy to utilize plant genetic resources from ex situ genebanks

Jens Keilwagen; Benjamin Kilian; Hakan Özkan; Steve Babben; Dragan Perovic; Klaus F. X. Mayer; Alexander Walther; C. Hart Poskar; Frank Ordon; Kellye Eversole; A. Börner; Martin W. Ganal; H. Knüpffer; Andreas Graner; Swetlana Friedel

The need for higher yielding and better-adapted crop plants for feeding the worlds rapidly growing population has raised the question of how to systematically utilize large genebank collections with their wide range of largely untouched genetic diversity. Phenotypic data that has been recorded for decades during various rounds of seed multiplication provides a rich source of information. Their usefulness has remained limited though, due to various biases induced by conservation management over time or changing environmental conditions. Here, we present a powerful procedure that permits an unbiased trait-based selection of plant samples based on such phenotypic data. Applying this technique to the wheat collection of one of the largest genebanks worldwide, we identified groups of plant samples displaying contrasting phenotypes for selected traits. As a proof of concept for our discovery pipeline, we resequenced the entire major but conserved flowering time locus Ppd-D1 in just a few such selected wheat samples – and nearly doubled the number of hitherto known alleles.


Molecular Breeding | 2013

A versatile fluorescence-based multiplexing assay for CAPS genotyping on capillary electrophoresis systems

Jelena Perovic; Cristina Silvar; Janine Koenig; Nils Stein; Dragan Perovic; Frank Ordon

Recent advances in next-generation sequencing techniques and the development of genomics resources for crop plants with large genomes allow the detection of a large number of single nucleotide polymorphisms (SNPs) and their use in a high-throughput manner. However, such large numbers of SNPs are on the one hand not needed in some plant breeding projects and on the other hand not affordable in some cases, raising the need for fast and low-cost innovative techniques for marker detection. In marker selection in plant breeding programs, cleaved amplified polymorphic sequence (CAPS) markers still play a significant role as a complement to other high-throughput methods for SNP genotyping. New methods focusing on the acceleration of CAPS-based genotyping are therefore highly desirable. The combination of the classical CAPS method and a M13-tailed primer multiplexing assay was used to develop an agarose-gel-free protocol for the analysis of SNPs via restriction enzyme digestion. PCR products were fluorescence-labeled with a universal M13 primer and subsequently digested with the appropriate restriction endonuclease. After mixing differently labeled products, they were detected in a capillary electrophoresis system. This method allowed the cost-effective genotyping of several SNPs in barley in a multiplexed manner at an overall low cost in a short period of time. This new method was efficiently combined with the simultaneous detection of simple sequence repeats in the same electrophoresis run, resulting in a procedure well suited for marker-based selection procedures, genotyping of mapping populations and the assay of genetic diversity.


Functional & Integrative Genomics | 2007

An integrated approach for the comparative analysis of a multigene family: the nicotianamine synthase genes of barley.

Dragan Perovic; Peter Tiffin; Dimitar Douchkov; Helmut Bäumlein; Andreas Graner

Recent genomic projects reveal that about half of the gene repertoire in plant genomes is made up by multigene families. In this paper, a set of structural and phylogenetic analyses have been applied to compare the differently sized nicotianamine synthase (NAS) gene families in barley and rice. Nicotianamine acts as a chelator of iron and other heavy metals and plays a key role in uptake, phloem transport and cytoplasmic distribution of iron, challenging efforts for the breeding of iron-efficient crop plants. Nine barley NAS genes have been mapped, and co-linearity of flanking genes in barley and rice was determined. The combined analyses reveal that the NAS multigene family members in barley originated through at least one duplication event that occurred before the divergence of rice and barley. Additional duplications appear to have occurred within each of the species. Although we detected no evidence for positive selection of recently duplicated genes within species, codon-based tests revealed evidence for positive selection having contributed to the divergence of some amino acids. The integrated comparative and phylogenetic analysis improved our current view of NAS gene family evolution, might facilitate the functional characterization of individual members and is applicable to other multigene families.

Collaboration


Dive into the Dragan Perovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Graner

Plant Genome Mapping Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ernesto Igartua

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Casas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge