Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dragana Jankovic is active.

Publication


Featured researches published by Dragana Jankovic.


Proceedings of the National Academy of Sciences of the United States of America | 2001

T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells

Andre A. Lighvani; David M. Frucht; Dragana Jankovic; Hidehiro Yamane; Julio Aliberti; Bruce D. Hissong; Bai V. Nguyen; Massimo Gadina; Alan Sher; William E. Paul; John J. O'Shea

Differentiation of naive CD4+ T cells into IFN-γ-producing T helper 1 (TH1) cells is pivotal for protective immune responses against intracellular pathogens. T-bet, a recently discovered member of the T-box transcription factor family, has been reported to play a critical role in this process, promoting IFN-γ production. Although terminal TH1 differentiation occurs over days, we now show that challenge of mice with a prototypical TH1-inducing stimulus, Toxoplasma gondii soluble extract, rapidly induced IFN-γ and T-bet; T-bet induction was substantially lower in IFN-γ-deficient mice. Naive T cells expressed little T-bet, but this transcription factor was induced markedly by the combination of IFN-γ and cognate antigen. Human myeloid antigen-presenting cells showed T-bet induction after IFN-γ stimulation alone, and this induction was antagonized by IL-4 and granulocyte/macrophage colony-stimulating factor. Although T-bet was induced rapidly and directly by IFN-γ, it was not induced by IFN-α, lipopolysaccharide, or IL-1, indicating that this action of IFN-γ was specific. Moreover, T-bet induction was dependent on Stat1 but not Stat4. These data argue for a model in which IFN-γ gene regulation involves an autocrine loop, whereby the cytokine regulates a transcription factor that promotes its own production. These findings substantially alter the current view of T-bet in IFN-γ regulation and promotion of cell-mediated immune responses.


Journal of Experimental Medicine | 2007

Conventional T-bet+Foxp3− Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection

Dragana Jankovic; Marika C. Kullberg; Carl G. Feng; Romina S. Goldszmid; Carmen M. Collazo; Mark D. Wilson; Thomas A. Wynn; Masahito Kamanaka; Richard A. Flavell; Alan Sher

Although interferon γ (IFN-γ) secretion is essential for control of most intracellular pathogens, host survival often also depends on the expression of interleukin 10 (IL-10), a cytokine known to counteract IFN-γ effector functions. We analyzed the source of regulatory IL-10 in mice infected with the protozoan parasite Toxoplasma gondii. Unexpectedly, IFN-γ–secreting T-bet+Foxp3− T helper type 1 (Th1) cells were found to be the major producers of IL-10 in these animals. Further analysis revealed that the same IL-10+IFN-γγ population displayed potent effector function against the parasite while, paradoxically, also inducing profound suppression of IL-12 production by antigen-presenting cells. Although at any given time point only a fraction of the cells appeared to simultaneously produce IL-10 and IFN-γ, IL-10 production could be stimulated in IL-10−IFN-γ+ cells by further activation in vitro. In addition, experiments with T. gondii–specific IL-10+IFN-γ+ CD4 clones revealed that although IFN-γ expression is imprinted and triggered with similar kinetics regardless of the state of Th1 cell activation, IL-10 secretion is induced more rapidly from recently activated than from resting cells. These findings indicate that IL-10 production by CD4+ T lymphocytes need not involve a distinct regulatory Th cell subset but can be generated in Th1 cells as part of the effector response to intracellular pathogens.


Journal of Experimental Medicine | 2006

IL-23 plays a key role in Helicobacter hepaticus–induced T cell–dependent colitis

Marika C. Kullberg; Dragana Jankovic; Carl G. Feng; Sophie Hue; Peter L. Gorelick; Brent S. McKenzie; Daniel J. Cua; Fiona Powrie; Allen W. Cheever; Kevin J. Maloy; Alan Sher

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that is caused in part by a dysregulated immune response to the intestinal flora. The common interleukin (IL)-12/IL-23p40 subunit is thought to be critical for the pathogenesis of IBD. We have analyzed the role of IL-12 versus IL-23 in two models of Helicobacter hepaticus–triggered T cell–dependent colitis, one involving anti–IL-10R monoclonal antibody treatment of infected T cell–sufficient hosts, and the other involving CD4+ T cell transfer into infected Rag−/− recipients. Our data demonstrate that IL-23 and not IL-12 is essential for the development of maximal intestinal disease. Although IL-23 has been implicated in the differentiation of IL-17–producing CD4+ T cells that alone are sufficient to induce autoimmune tissue reactivity, our results instead support a model in which IL-23 drives both interferon γ and IL-17 responses that together synergize to trigger severe intestinal inflammation.


Journal of Immunology | 2002

Cutting Edge: MyD88 Is Required for Resistance to Toxoplasma gondii Infection and Regulates Parasite-Induced IL-12 Production by Dendritic Cells

Charles A. Scanga; Julio Aliberti; Dragana Jankovic; Florence Tilloy; Soumaya Bennouna; Eric Y. Denkers; Ruslan Medzhitov; Alan Sher

Host resistance to the intracellular protozoan Toxoplasma gondii is highly dependent on early IL-12 production by APC. We demonstrate here that both host resistance and T. gondii-induced IL-12 production are dramatically reduced in mice lacking the adaptor molecule MyD88, an important signaling element used by Toll-like receptor (TLR) family members. Infection of MyD88-deficient mice with T. gondii resulted in uncontrolled parasite replication and greatly reduced plasma IL-12 levels. Defective IL-12 responses to T. gondii Ags (soluble tachyzoite Ag (STAg)) were observed in MyD88−/− peritoneal macrophages, neutrophils, and splenic dendritic cells (DC). In contrast, DC from TLR2- or TLR4-deficient animals developed normal IL-12 responses to STAg. In vivo treatment with pertussis toxin abolished the residual IL-12 response displayed by STAg-stimulated DC from MyD88−/− mice. Taken together, these data suggest that the induction of IL-12 by T. gondii depends on a unique mechanism involving both MyD88 and G protein-coupled signaling pathways.


Journal of Experimental Medicine | 2004

Basophils Produce IL-4 and Accumulate in Tissues after Infection with a Th2-inducing Parasite

Booki Min; Melanie Prout; Jane Hu-Li; Dragana Jankovic; Ellen S. Morgan; Joseph F. Urban; Ann M. Dvorak; Fred D. Finkelman; Graham LeGros; William E. Paul

Using mice in which the eGfp gene replaced the first exon of the Il4 gene (G4 mice), we examined production of interleukin (IL)-4 during infection by the intestinal nematode Nippostrongylus brasiliensis (Nb). Nb infection induced green fluorescent protein (GFP)pos cells that were FcɛRIpos, CD49bbright, c-kitneg, and Gr1neg. These cells had lobulated nuclei and granules characteristic of basophils. They were found mainly in the liver and lung, to a lesser degree in the spleen, but not in the lymph nodes. Although some liver basophils from naive mice express GFP, Nb infection enhanced GFP expression and increased the number of tissue basophils. Similar basophil GFP expression was found in infected Stat6−/− mice. Basophils did not increase in number in infected Rag2−/− mice; Rag2−/− mice reconstituted with CD4 T cells allowed significant basophil accumulation, indicating that CD4 T cells can direct both tissue migration of basophils and enhanced IL-4 production. IL-4 production was immunoglobulin independent and only partially dependent on IL-3. Thus, infection with a parasite that induces a “Th2-type response” resulted in accumulation of tissue basophils, and these cells, stimulated by a non-FcR cross-linking mechanism, are a principal source of in vivo IL-4 production.


Journal of Experimental Medicine | 2002

Bacteria-triggered CD4+ T Regulatory Cells Suppress Helicobacter hepaticus–induced Colitis

Marika C. Kullberg; Dragana Jankovic; Peter L. Gorelick; Patricia Caspar; John J. Letterio; Allen W. Cheever; Alan Sher

We have previously demonstrated that interleukin (IL)-10–deficient (IL-10 knockout [KO]) but not wild-type (WT) mice develop colitis after infection with Helicobacter hepaticus. Here, we show that infected recombination activating gene (RAG) KO mice develop intestinal inflammation after reconstitution with CD4+ T cells from IL-10 KO animals and that the cotransfer of CD4+ T cells from H. hepaticus–infected but not uninfected WT mice prevents this colitis. The disease-protective WT CD4+ cells are contained within the CD45RBlow fraction and unexpectedly were found in both the CD25+ and the CD25− subpopulations of these cells, their frequency being higher in the latter. The mechanism by which CD25+ and CD25− CD45RBlow CD4+ cells block colitis involves IL-10 and not transforming growth factor (TGF)-β, as treatment with anti–IL-10R but not anti–TGF-β monoclonal antibody abrogated their protective effect. In vitro, CD45RBlow CD4+ cells from infected WT mice were shown to produce IL-10 and suppress interferon-γ production by IL-10 KO CD4+ cells in an H. hepaticus antigen–specific manner. Together, our data support the concept that H. hepaticus infection results in the induction in WT mice of regulatory T cells that prevent bacteria-induced colitis. The induction of such cells in response to gut flora may be a mechanism protecting normal individuals against inflammatory bowel disease.


Immunity | 2002

In the Absence of IL-12, CD4+ T Cell Responses to Intracellular Pathogens Fail to Default to a Th2 Pattern and Are Host Protective in an IL-10−/− Setting

Dragana Jankovic; Marika C. Kullberg; Sara Hieny; Patricia Caspar; Carmen M. Collazo; Alan Sher

IL-12-deficient mice exposed to nonlethal infections with intracellular pathogens or repeatedly immunized with a pathogen extract developed lowered but nevertheless substantial numbers of IFN-gamma(+) CD4(+) T cells compared to those observed in wild-type animals. Moreover, the CD4(+) responses in these knockout animals failed to default to a Th2 pattern. The protective efficacy of the Th1 cells developing in an IL-12-deficient setting was found to be limited by IL-10 since mice doubly deficient in IL-10 and IL-12 survived, while animals deficient in IL-12 alone succumbed to pathogen challenge. In contrast to IL-12 knockout mice, MyD88-deficient animals exposed to a Th1 microbial stimulus developed a pure Th2 response, arguing that this signaling element plays a more critical function than IL-12 in determining pathogen-induced CD4 polarization.


Journal of Immunology | 2000

Single Cell Analysis Reveals That IL-4 Receptor/Stat6 Signaling Is Not Required for the In Vivo or In Vitro Development of CD4+ Lymphocytes with a Th2 Cytokine Profile

Dragana Jankovic; Marika C. Kullberg; Nancy Noben-Trauth; Patricia Caspar; William E. Paul; Alan Sher

The concept that IL-4 is the primary signal for Th2 lymphocyte differentiation has recently been put in doubt by studies in which the production of Th2-associated cytokines was detected in mice deficient in IL-4 synthesis or IL-4R triggering. In this study, we formally demonstrate by single cell analysis that CD4+ lymphocytes with a classical Th2 phenotype (IL-4+, IL-5+, IFN-γ−, IL-2−) develop in significant numbers in helminth-infected mice deficient in either IL-4R α-chain or Stat6. While an expanded population of Th1 (IL-4−, IL-5−, IFN-γ+, IL-2+) lymphocytes was observed in the same animals, surprisingly, cells with a mixed Th0 cytokine pattern were rare. The cytokine production phenotypes of the Th1 and Th2 subpopulations generated in infected Stat6-deficient mice were unaffected by in vitro neutralization of endogenous IL-4 or IFN-γ. Nevertheless, while addition of exogenous rIL-12 resulted in transitory IFN-γ production by Th2 lymphocytes from both wild-type and Stat6-deficient mice, IL-4 synthesis was preserved in the former, but temporarily ablated in the latter cells. Importantly, IL-4+ IFN-γ− and IL-4− IFN-γ+ populations similar to those arising in helminth-infected Stat6-deficient mice could also be generated in vitro by repetitive polyclonal stimulation of CD4+CD62Lhigh lymphocytes from uninfected mice of the same strain. Together, the results of these single cell analysis experiments demonstrate that IL-4R/Stat6 signaling, while influencing the final frequency of Th2 lymphocytes, is not essential for Th2 cell development, and suggest that this pathway has a previously unrecognized function in stabilizing Th2 populations once they have emerged.


Immunity | 2011

Early Th1 Cell Differentiation Is Marked by a Tfh Cell-like Transition

Shingo Nakayamada; Yuka Kanno; Hayato Takahashi; Dragana Jankovic; Kristina T. Lu; Thomas A. Johnson; Hong-Wei Sun; Golnaz Vahedi; Ofir Hakim; Robin Handon; Pamela L. Schwartzberg; Gordon L. Hager; John J. O'Shea

Follicular helper T (Tfh) cells comprise an important subset of helper T cells; however, their relationship with other helper lineages is incompletely understood. Herein, we showed interleukin-12 acting via the transcription factor STAT4 induced both Il21 and Bcl6 genes, generating cells with features of both Tfh and Th1 cells. However, STAT4 also induced the transcription factor T-bet. With ChIP-seq, we defined the genome-wide targets of T-bet and found that it repressed Bcl6 and other markers of Tfh cells, thereby attenuating the nascent Tfh cell-like phenotype in the late phase of Th1 cell specification. Tfh-like cells were rapidly generated after Toxoplasma gondii infection in mice, but T-bet constrained Tfh cell expansion and consequent germinal center formation and antibody production. Our data argue that Tfh and Th1 cells share a transitional stage through the signal mediated by STAT4, which promotes both phenotypes. However, T-bet represses Tfh cell functionalities, promoting full Th1 cell differentiation.


Trends in Immunology | 2001

Th1 and Th2-cell commitment during infectious disease: asymmetry in divergent pathways

Dragana Jankovic; Zhugong Liu; William C. Gause

The development of T helper 1 (Th1) versus Th2 cells is a major branch point in the immune response. It is an important determinant of whether the response to an infectious pathogen will lead to protection of the host or dissemination of the disease. Recent studies have suggested that this process is governed by distinct sets of signals provided by dendritic cells upon interactions with specific infectious agents. A model is proposed that links together the pathogen, the innate response and Th-cell polarization.

Collaboration


Dive into the Dragana Jankovic's collaboration.

Top Co-Authors

Avatar

Alan Sher

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marika C. Kullberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Allen W. Cheever

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patricia Caspar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sara Hieny

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Wynn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge