Drew S. Kern
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Drew S. Kern.
The Neurologist | 2007
Drew S. Kern; Rajeev Kumar
Background:Deep brain stimulation (DBS) for the treatment of neurologic diseases has markedly increased in popularity over the past 15 years. This review primarily focuses on movement disorder applications and efficacy of DBS, but also briefly reviews other promising new and old uses of DBS. Review Summary:A multidisciplinary team consisting of a movement disorders neurologist, a functional neurosurgeon, and a neuropsychologist optimally selects patients for DBS. Patients must be significantly disabled despite optimal medical therapy and be cognitively healthy without significant psychiatric disorders. Although this surgery is elective, it should not be withheld until the patient suffers marked loss of quality of life. Patients must have support from caregivers and postoperatively multiple DBS programming visits may be required. DBS of the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi) significantly improves motor performance, activities of daily living, and quality of life in advanced Parkinson disease. In addition, STN DBS allows for marked reductions of antiparkinson medication. Stimulation of the ventralis intermedius nucleus of the thalamus is an effective treatment for essential tremor with sustained long-term effects. The GPi may be the preferred site of stimulation for dystonia with movement scores typically improved by 75% in patients with primary dystonia. Conclusions:DBS is an effective surgical treatment for movement disorders with sustained long-term benefits. Further research is ongoing to better understand the mechanism of DBS, refine the hardware to improve efficacy and reduce adverse effects, and identify additional applications and new anatomic targets.
Neurology | 2015
Naomi P. Visanji; Connie Marras; Drew S. Kern; Amaal Al Dakheel; Andrew F. Gao; Louis W. C. Liu; Anthony E. Lang; Lili-Naz Hazrati
Objective: To determine the utility of detecting α-synuclein (αSyn) in colonic mucosal biopsy tissue as a potential diagnostic biomarker for Parkinson disease (PD). Methods: We used the paraffin-embedded tissue (PET) blot, which degrades physiologic nonaggregated αSyn using proteinase K and enhances antigen retrieval allowing sensitive and selective detection of remaining protein aggregates, to detect αSyn in colonic mucosal biopsies from 15 patients with early PD (<3 years), 7 patients with later PD (>5 years), and 11 individuals without PD. αSyn and serine 129–phosphorylated αSyn (Ser129p-αSyn) were assessed by PET blot and conventional immunohistochemistry. Results: PET blot–resistant aggregated αSyn and Ser129p-αSyn was present in 12 of 15 individuals with early PD, 7 of 7 individuals with later PD, and 11 of 11 control subjects. The number of biopsies positive by PET blot relative to conventional immunohistochemistry was significantly lower in both PD groups compared with the control group for both αSyn and Ser129p-αSyn, whereas routine immunohistochemistry was positive more often in PD, but was positive in as many as 9 of 11 control individuals. Conclusion: Strong evidence of the presence of aggregated hyperphosphorylated αSyn in individuals with and without PD, using such a sensitive and specific method as the PET blot, suggests that colonic deposition of αSyn is not a useful diagnostic test for PD. The utility of detecting αSyn in the colon as a biomarker in combination with other assessments remains to be determined.
Journal of Biomedical Materials Research Part A | 2010
Kimberly B. Bjugstad; Kyle J. Lampe; Drew S. Kern; Melissa J. Mahoney
Poly(ethylene glycol) or PEG-based hydrogels provide a useful methodology for tissue engineering and the controlled-release of drugs within the central nervous system (CNS). To be successful, the local neuroinflammatory response to an implant must be well understood. Toward this end, the focus was to examine the localized recruitment and activation of microglia and astrocytes following implantation of PEG-based hydrogels in the brain. Because they are of clinical relevance and may impact brain tissue differently, hydrogels with different mass loss profiles were examined. At all time points, a needle penetration in sham animals evoked a greater astrocytic response than hydrogel conditions. The astrocyte response that ensued varied with degradation rate. An attenuated response was present in more slowly degrading and nondegrading conditions. Relative to sham, hydrogel conditions attenuated the acute microglial response during the week after implant. By 56 days, microglial levels in shams decreased below the observed response in slowly degrading and nondegradable gels, which remained constant overtime. Although the inflammatory response to PEG-based hydrogels was complex depending on degradation rates, the magnitude of the acute microglia response and the long-term astrocyte response were attenuated suggesting the use of these materials for drug and cell delivery to the CNS.
Cell Transplantation | 2008
Kimberly B. Bjugstad; D.E. Redmond; Kyle J. Lampe; Drew S. Kern; John R. Sladek; Melissa J. Mahoney
Degradable polymers have been used successfully in a wide variety of peripheral applications from tissue regeneration to drug delivery. These polymers induce little inflammatory response and appear to be well accepted by the host environment. Their use in the brain, for neural tissue reconstruction or drug delivery, also could be advantageous in treating neurodegenerative disorders. Because the brain has a unique immune response, a polymer that is compatible in the body may not be so in the brain. In the present study, polyethylene glycol (PEG)-based hydrogels were implanted into the striatum and cerebral cortex of nonhuman primates. Four months after implantation, brains were processed to evaluate the extent of astrogliosis and scaring, the presence of microglia/macrophages, and the extent of T-cell infiltration. Hydrogels with 20% w/v PEG implanted into the brain stimulated a slight increase in astrocytic and microglial/macrophage presence, as indicated by a small increase in glial fibrillary acidic protein (GFAP) and CD68 staining intensity. This increase was not substantially different from that found in the sham-implanted hemispheres of the brain. Staining for CD3+ T cells indicated no presence of peripheral T-cell infiltration. No gliotic scarring was seen in any implanted hemisphere. The combination of low density of GFAP-positive cells and CD68-positive cells, the absence of T cells, and the lack of gliotic scarring suggest that this level of immune response is not indicative of immunorejection and that the PEG-based hydrogel has potential to be used in the primate brain for local drug delivery or neural tissue regeneration.
Journal of Biomedical Materials Research Part A | 2011
Kyle J. Lampe; Drew S. Kern; Melissa J. Mahoney; Kimberly B. Bjugstad
Tailored delivery of neurotrophic factors (NFs) is a critical challenge that continues to inhibit strategies for guidance of axonal growth in vivo. Of particular importance is the ability to recreate innervation of distant brain regions by transplant tissue, for instance rebuilding the nigrostriatal track, one focus in Parkinsons disease research. Many strategies have utilized polymer drug delivery to target NF release in space and time, but combinatorial approaches are needed to deliver multiple NFs at relevant therapeutic times and locations without toxic side effects. Here we engineered a paradigm of PLGA microparticles entrapped within a degradable PEG-based hydrogel device to locally release two different types of NFs with two different release profiles. Hydrogel/microparticle devices were developed and analyzed for their ability to release GDNF in the caudal area of the brain, near the substantia nigra, or BDNF in the rostral area, near the striatum. The devices delivered their respective NFs in a region localized to within 100 μm of the bridge, but not exclusively to the targeted rostral or caudal ends. BDNF was slowly released over a 56-day period, whereas a bolus of GDNF was released around 28 days. The timed delivery of NFs from implanted devices significantly reduced the microglial response relative to sham surgeries. Given the coordinated drug delivery ability and reduced localized inflammatory response, this multifaceted PEG hydrogel/PLGA microparticle strategy may be a useful tool for further development in combining tissue engineering and drug delivery, and recreating the nigrostriatal track.
Cell Transplantation | 2011
Drew S. Kern; Kenneth N. Maclean; H. Jiang; E. Y. Synder; John R. Sladek; Kimberly B. Bjugstad
Tau accumulation, in the form of neurofibrillary tangles (NFT), is an early neuropathological characteristic of Alzheimers disease (AD) and early onset AD frequently seen in Down syndrome (DS). We investigated the presence of tau accumulation in the brains of aging DS mice using the Ts65Dn mouse model. All aged mice appeared to have substantial clusters of extracellular granules that were positive for tau and reelin, but not for amyloid-β or APP. These clusters were found primarily in CA1 of the hippocampus. In addition, the aged trisomic DS mice had a significantly greater accumulation of extracellular tau/reelin granular deposits compared to disomic littermates. These granules were similar to those described by others who also found extracelluar proteinous granules in the brains of non-DS mice engineered to model aging and/or AD. When neural stem cells (NSC) were implanted unilaterally into the hippocampus of the Ts65Dn mice, the tau/reelin-positive granules were significantly reduced in both trisomic and disomic mice. Our findings indicate that changes in tau/reelin-positive granules could be used as an index for neuropathological assessment in aging DS and AD. Furthermore, changes in granule density could be used to test the efficacy of novel treatments, such as NSC implantation. Lastly, it is speculated that the unique abilities of NSC to migrate and express growth factors might be a contributing factor to reducing tau/reelin accumulation in aging DS and AD.
Journal of Neurology, Neurosurgery, and Psychiatry | 2017
Anand Tekriwal; Drew S. Kern; Jean Tsai; Nuri F. Ince; Jianping Wu; John A. Thompson; Aviva Abosch
Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterised by complex motor enactment of dreams and is a potential prodromal marker of Parkinsons disease (PD). Of note, patients with PD observed during RBD episodes exhibit improved motor function, relative to baseline states during wake periods. Here, we review recent epidemiological and mechanistic findings supporting the prodromal value of RBD for PD, incorporating clinical and electrophysiological studies. Explanations for the improved motor function during RBD episodes are evaluated in light of recent publications. In addition, we present preliminary findings describing changes in the activity of the basal ganglia across the sleep–wake cycle that contribute to our understanding of RBD.
Experimental Neurology | 2006
Felix Eckenstein; Toby McGovern; Drew S. Kern; Jason Deignan
Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) are widely expressed in the mature nervous system and are thought to mediate plasticity and repair. We report the generation of transgenic mice that can be induced to express a dominant-negative FGFR (dnFGFR) in select neuronal populations. We show that a modified Thy1 promoter [Vidal, M., Morris, R., Grosveld, F., and Spanopoulou, E. 1990. Tissue-specific control elements of the Thy-1 gene. EMBO J 9 833-840] can be used to drive widespread neuronal expression of the reverse tetracycline transactivator M2 (rtTA-M2 [Urlinger, S., Baron, U., Thellmann, M., Hasan, M.T., Bujard, H., and Hillen, W., 2000. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. U. S. A. 97, 7963-7968]), which after stimulation with doxycycline induces co-expression of dnFGFR in mosaic subpopulations of rtTA-M2-positive forebrain neurons, but not in hindbrain and spinal cord rtTA-M2-positive neurons. Expression of dnFGFR did not cause overt neurodegeneration, but led to increased neuronal vulnerability: four days after a stab injury, cell death was marked in the hippocampus of dnFGFR-expressing animals when compared to controls. The nuclear morphology of dying CA1 pyramidal cells suggested an apoptotic mechanism of cell death. These observations demonstrate the importance of endogenous FGFs in the maintenance of the nervous system.
Neurology | 2017
Michelle E. Fullard; Dylan P. Thibault; Andrew F. Hill; Joellyn Fox; Danish Bhatti; Michelle A. Burack; Nabila Dahodwala; Elizabeth Haberfeld; Drew S. Kern; Olga S. Klepitskava; Enrique Urrea-Mendoza; Phillip Myers; Jay Nutt; Miriam R. Rafferty; Jason M. Schwalb; Lisa M. Shulman; Allison W. Willis
Objective: To examine rehabilitation therapy utilization for Parkinson disease (PD). Methods: We identified 174,643 Medicare beneficiaries with a diagnosis of PD in 2007 and followed them through 2009. The main outcome measures were annual receipt of physical therapy (PT), occupational therapy (OT), or speech therapy (ST). Results: Outpatient rehabilitation fee-for-service use was low. In 2007, only 14.2% of individuals with PD had claims for PT or OT, and 14.6% for ST. Asian Americans were the highest users of PT/OT (18.4%) and ST (18.4%), followed by Caucasians (PT/OT 14.4%, ST 14.8%). African Americans had the lowest utilization (PT/OT 7.8%, ST 8.2%). Using logistic regression models that accounted for repeated measures, we found that African American patients (adjusted odds ratio [AOR] 0.63 for PT/OT, AOR 0.63 for ST) and Hispanic patients (AOR 0.97 for PT/OT, AOR 0.91 for ST) were less likely to have received therapies compared to Caucasian patients. Patients with PD with at least one neurologist visit per year were 43% more likely to have a claim for PT evaluation as compared to patients without neurologist care (AOR 1.43, 1.30–1.48), and this relationship was similar for OT evaluation, PT/OT treatment, and ST. Geographically, Western states had the greatest use of rehabilitation therapies, but provider supply did not correlate with utilization. Conclusions: This claims-based analysis suggests that rehabilitation therapy utilization among older patients with PD in the United States is lower than reported for countries with comparable health care infrastructure. Neurologist care is associated with rehabilitation therapy use; provider supply is not.
Movement Disorders Clinical Practice | 2016
Marina Picillo; Gustavo B. Vincos; Drew S. Kern; Susan H. Fox; Anthony E. Lang; Alfonso Fasano
The finger tapping test evaluates bradykinesia, focusing on decrement in rate, amplitude, or both with repetitive action. Vertical positioning of the hands during this task may also be clinically relevant. We developed a “TAP score,” measuring the vertical level above the lap where the patient performs the finger tapping ranging from 1 (task performed with the hand close to the lap) to 4 (above the head). In this pilot study, we retrospectively applied the TAP score in addition to usual motor scales during acute levodopa challenge in 123 PD patients (of whom 88 presented l‐dopa‐induced dyskinesia [LID]). TAP ON was higher than TAP OFF. Patients with LID presented higher TAP ON. TAP ON was related to LID severity, whereas TAP OFF was inversely related to the OFF motor symptoms. The TAP score may be a measure of proximal movement amplitude representing an easy method to evaluate defective or excessive motor output in patients with advanced disease.