Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Drew Schwartz is active.

Publication


Featured researches published by Drew Schwartz.


Infection and Immunity | 2011

Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection.

Drew Schwartz; Swaine L. Chen; Scott J. Hultgren; Patrick C. Seed

ABSTRACT Urinary tract infections (UTIs) have complex dynamics, with uropathogenic Escherichia coli (UPEC), the major causative agent, capable of colonization from the urethra to the kidneys in both extracellular and intracellular niches while also producing chronic persistent infections and frequent recurrent disease. In mouse and human bladders, UPEC invades the superficial epithelium, and some bacteria enter the cytoplasm to rapidly replicate into intracellular bacterial communities (IBCs) comprised of ∼104 bacteria each. Through IBC formation, UPEC expands in numbers while subverting aspects of the innate immune response. Within 12 h of murine bladder infection, half of the bacteria are intracellular, with 3 to 700 IBCs formed. Using mixed infections with green fluorescent protein (GFP) and wild-type (WT) UPEC, we discovered that each IBC is clonally derived from a single bacterium. Genetically tagged UPEC and a multiplex PCR assay were employed to investigate the distribution of UPEC throughout urinary tract niches over time. In the first 24 h postinfection (hpi), the fraction of tags dramatically decreased in the bladder and kidney, while the number of CFU increased. The percentage of tags detected at 6 hpi correlated to the number of IBCs produced, which closely matched a calculated multinomial distribution based on IBC clonality. The fraction of tags remaining thereafter depended on UTI outcome, which ranged from resolution of infection with or without quiescent intracellular reservoirs (QIRs) to the development of chronic cystitis as defined by persistent bacteriuria. Significantly more tags remained in mice that developed chronic cystitis, arguing that during the acute stages of infection, a higher number of IBCs precedes chronic cystitis than precedes QIR formation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation.

Drew Schwartz; Vasilios Kalas; Jerome S. Pinkner; Swaine L. Chen; Caitlin N. Spaulding; Karen W. Dodson; Scott J. Hultgren

Significance The evolution of multidrug resistance in pathogenic bacteria, including uropathogenic Escherichia coli (UPEC), that cause most urinary tract infections is becoming a worldwide crisis. UPEC use a variety of virulence factors and adhesins, including the mannose-binding FimH adhesin, to colonize and invade bladder tissue, often forming intracellular biofilms and quiescent reservoirs that can contribute to recurrent infections recalcitrant to treatment. Using two prototypical UPEC strains, we discovered that positively selected residues outside of the FimH mannose-binding pocket affect transitions between low- and high-affinity FimH conformations, which extraordinarily impacts FimH function during pathogenesis. Thus, this work elucidates mechanistic and functional insights into pathoadaptation and evolutionary fine-tuning of critical virulence interactions. Chaperone–usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH’s ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.


Infection and Immunity | 2011

Immune Activation and Suppression by Group B Streptococcus in a Murine Model of Urinary Tract Infection

Kimberly A. Kline; Drew Schwartz; Warren G. Lewis; Scott J. Hultgren; Amanda L. Lewis

ABSTRACT Group B streptococcus (GBS) is a common commensal of the gastrointestinal and vaginal mucosa and a leading cause of serious infections in newborns, the elderly, and immunocompromised populations. GBS also causes infections of the urinary tract. However, little is known about host responses to GBS urinary tract infection (UTI) or GBS virulence factors that participate in UTI. Here we describe a novel murine model of GBS UTI that may explain some features of GBS urinary tract association in the human host. We observed high titers and heightened histological signs of inflammation and leukocyte recruitment in the GBS-infected kidney. However, extensive inflammation and leukocyte recruitment were not observed in the bladder, suggesting that GBS may suppress bladder inflammation during cystitis. Acute GBS infection induced the localized expression of proinflammatory cytokines interleukin-1α (IL-1α), macrophage inflammatory protein-1α (MIP-1α), MIP-1β, and IL-9, as well as IL-10, more commonly considered an anti-inflammatory cytokine. Using isogenic GBS strains with different capsule structures, we show that capsular sialic acid residues contribute to GBS urinary tract pathogenesis, while high levels of sialic acid O-acetylation attenuate GBS pathogenesis in the setting of UTI, particularly in direct competition experiments. In vitro studies demonstrated that GBS sialic acids participate in the suppression of murine polymorphonuclear leukocyte (PMN) bactericidal activities, in addition to reducing levels of IL-1α, tumor necrosis factor alpha, IL-1β, MIP-1α, and KC produced by PMNs. These studies define several basic molecular and cellular events characterizing GBS UTI in an animal model, showing that GBS participates simultaneously in the activation and suppression of host immune responses in the urinary tract.


Infection and Immunity | 2012

Immune Modulation by Group B Streptococcus Influences Host Susceptibility to Urinary Tract Infection by Uropathogenic Escherichia coli

Kimberly A. Kline; Drew Schwartz; Nicole M. Gilbert; Scott J. Hultgren; Amanda L. Lewis

ABSTRACT Urinary tract infection (UTI) is most often caused by uropathogenic Escherichia coli (UPEC). UPEC inoculation into the female urinary tract (UT) can occur through physical activities that expose the UT to an inherently polymicrobial periurethral, vaginal, or gastrointestinal flora. We report that a common urogenital inhabitant and opportunistic pathogen, group B Streptococcus (GBS), when present at the time of UPEC exposure, undergoes rapid UPEC-dependent exclusion from the murine urinary tract, yet it influences acute UPEC-host interactions and alters host susceptibility to persistent outcomes of bladder and kidney infection. GBS presence results in increased UPEC titers in the bladder lumen during acute infection and reduced inflammatory responses of murine macrophages to live UPEC or purified lipopolysaccharide (LPS), phenotypes that require GBS mimicry of host sialic acid residues. Taken together, these studies suggest that despite low titers, the presence of GBS at the time of polymicrobial UT exposure may be an overlooked risk factor for chronic pyelonephritis and recurrent UTI in susceptible groups, even if it is outcompeted and thus absent by the time of diagnosis.


EBioMedicine | 2014

Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis

Thomas J. Hannan; Pacita L. Roberts; Terrence E. Riehl; Sjoerd van der Post; Jana Binkley; Drew Schwartz; Hiroyuki Miyoshi; Matthias Mack; Reto A. Schwendener; Thomas M. Hooton; Thaddeus S. Stappenbeck; Gunnar C. Hansson; William F. Stenson; Marco Colonna; Ann E. Stapleton; Scott J. Hultgren

The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic strategies to combat urinary tract infections (UTIs). Immunomodulatory therapy may provide benefit, as treatment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic cystitis, which predisposes to recurrent infection. Here we discovered soluble biomarkers engaged in myeloid cell development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young women with UTI. Translation of these findings revealed that temperance of the neutrophil response early during UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus, cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and drugs targeting cyclooxygenase-2 could prevent recurrent UTI.


PLOS Pathogens | 2015

Uropathogenic Escherichia coli superinfection enhances the severity of mouse bladder infection.

Drew Schwartz; Matt S. Conover; Thomas J. Hannan; Scott J. Hultgren

Urinary tract infections (UTIs) afflict over 9 million women in America every year, often necessitating long-term prophylactic antibiotics. One risk factor for UTI is frequent sexual intercourse, which dramatically increases the risk of UTI. The mechanism behind this increased risk is unknown; however, bacteriuria increases immediately after sexual intercourse episodes, suggesting that physical manipulation introduces periurethral flora into the urinary tract. In this paper, we investigated whether superinfection (repeat introduction of bacteria) resulted in increased risk of severe UTI, manifesting as persistent bacteriuria, high titer bladder bacterial burdens and chronic inflammation, an outcome referred to as chronic cystitis. Chronic cystitis represents unchecked luminal bacterial replication and is defined histologically by urothelial hyperplasia and submucosal lymphoid aggregates, a histological pattern similar to that seen in humans suffering chronic UTI. C57BL/6J mice are resistant to chronic cystitis after a single infection; however, they developed persistent bacteriuria and chronic cystitis when superinfected 24 hours apart. Elevated levels of interleukin-6 (IL-6), keratinocyte cytokine (KC/CXCL1), and granulocyte colony-stimulating factor (G-CSF) in the serum of C57BL/6J mice prior to the second infection predicted the development of chronic cystitis. These same cytokines have been found to precede chronic cystitis in singly infected C3H/HeN mice. Furthermore, inoculating C3H/HeN mice twice within a six-hour period doubled the proportion of mice that developed chronic cystitis. Intracellular bacterial replication, regulated hemolysin (HlyA) expression, and caspase 1/11 activation were essential for this increase. Microarrays conducted at four weeks post inoculation in both mouse strains revealed upregulation of IL-1 and antimicrobial peptides during chronic cystitis. These data suggest a mechanism by which caspase-1/11 activation and IL-1 secretion could predispose certain women to recurrent UTI after frequent intercourse, a predisposition predictable by several serum biomarkers in two murine models.


Mbio | 2015

Subinhibitory Antibiotic Therapy Alters Recurrent Urinary Tract Infection Pathogenesis through Modulation of Bacterial Virulence and Host Immunity

Lee Goneau; Thomas J. Hannan; Roderick A. MacPhee; Drew Schwartz; Jean M. Macklaim; Gregory B. Gloor; Hassan Razvi; Gregor Reid; Scott J. Hultgren; Jeremy P. Burton

ABSTRACT The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. IMPORTANCE Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uropathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establishment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to exacerbate infection. A part of these changes was thought to be due to suppression of mucosal immunity, as demonstrated through reductions in cytokine secretion and migration of leukocytes into the urinary tract. This work identifies novel risk factors associated with antibiotic therapy when dosing strategies fall below subtherapeutic levels. Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uropathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establishment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to exacerbate infection. A part of these changes was thought to be due to suppression of mucosal immunity, as demonstrated through reductions in cytokine secretion and migration of leukocytes into the urinary tract. This work identifies novel risk factors associated with antibiotic therapy when dosing strategies fall below subtherapeutic levels.


PLOS ONE | 2014

Impact of host age and parity on susceptibility to severe urinary tract infection in a murine model

Kimberly A. Kline; Drew Schwartz; Nicole M. Gilbert; Amanda L. Lewis

The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10–100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups.


Nature microbiology | 2017

A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease

Valerie P. O'Brien; Thomas J. Hannan; Lu Yu; Jonathan Livny; Elisha D. O. Roberson; Drew Schwartz; Spenser Souza; Cathy Mendelsohn; Marco Colonna; Amanda L. Lewis; Scott J. Hultgren

Recurrent bacterial infections are a significant burden worldwide, and prior history of infection is often a significant risk factor for developing new infections. For urinary tract infection (UTI), a history of two or more episodes is an independent risk factor for acute infection. However, mechanistic knowledge of UTI pathogenesis has come almost exclusively from studies in naive mice. Here we show that, in mice, an initial Escherichia coli UTI, whether chronic or self-limiting, leaves a long-lasting molecular imprint on the bladder tissue that alters the pathophysiology of subsequent infections, affecting host susceptibility and disease outcome. In bladders of previously infected versus non-infected, antibiotic-treated mice, we found (1) an altered transcriptome and defects in cell maturation, (2) a remodelled epithelium that confers resistance to intracellular bacterial colonization, and (3) changes to cyclooxygenase-2-dependent inflammation. Furthermore, in mice with a history of chronic UTI, cyclooxygenase-2-dependent inflammation allowed a variety of clinical E. coli isolates to circumvent intracellular colonization resistance and cause severe recurrent UTI, which could be prevented by cyclooxygenase-2 inhibition or vaccination. This work provides mechanistic insight into how a history of infection can impact the risk for developing recurrent infection and has implications for the development of therapeutics for recurrent UTI.


Proceedings of the National Academy of Sciences of the United States of America | 1960

GENETIC STUDIES ON MUTANT ENZYMES IN MAIZE: SYNTHESIS OF HYBRID ENZYMES BY HETEROZYGOTES.

Drew Schwartz

Collaboration


Dive into the Drew Schwartz's collaboration.

Top Co-Authors

Avatar

Scott J. Hultgren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Amanda L. Lewis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Hannan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Kline

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Swaine L. Chen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Marco Colonna

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Gilbert

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caitlin N. Spaulding

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge